Effect of Temperature on Organic Carbon Mineralization in Two Types of Soil at Tea Plantations
-
摘要: 室内模拟亚热带地区2种不同类型茶园土壤(黄壤和高山草甸土)在3种温度(10、20和30℃)下的有机碳矿化特征,分析有机碳矿化对温度变化的响应特征。结果表明:在47 d培养期间内,土壤类型和温度对茶园有机碳矿化具有显著影响,并且存在显著的交互作用;相同培养温度条件下高山草甸土茶园有机碳矿化量和矿化速率常数k均显著高于黄壤,但矿化比例差异不显著,随着培养温度的增大,有机碳累积矿化量持续增加,增幅分别为20.90~91.88%(黄壤)和48.52~113.88%(高山草甸土),且高山草甸土有机碳Q10值高于黄壤,说明有机碳含量丰富的高海拔高山草甸土茶园土壤有机碳温度敏感性更高;低温培养条件下(<20℃)土壤有机碳矿化的温度敏感性均显著高于高温培养条件下,说明低温条件下有机碳矿化速率对升温更敏感,低温条件下(<20℃)高山草甸土茶园土壤平均Q10值(2.05)显著高于黄壤(1.66),但高温条件下(>20℃),两者之间没有显著差异;一级动力学方程能较好地描述了2种茶园土壤有机碳的矿化累积动态,土壤有机碳的潜在矿化量(C0)随温度增加而增加。Abstract: An incubation test on the yellow and alpine meadow soils collected from the tea plantations in the subtropical region was conducted at 10, 20, and 30℃ to examine the response of the soil organic carbon (SOC) mineralization due to the temperature changes. The results showed that, in a 47 d incubation, both soil type and temperature significantly affected the SOC mineralization with significant interactions between the two factors. At a same incubation temperature, the SOC mineralization accumulation and mineralization constant (k) were significantly higher in the alpine meadow than the yellow soil, but not on the mineralization rate. The cumulative SOC mineralization increased with increasing temperature by 20.90%-91.88% on the yellow soil, and 48.52%-113.88% on the alpine meadow soil. The temperature sensitivity, Q10, on SOC of the alpine meadow soil was significantly higher than that of the yellow soil, suggesting a greater effect of climate warming on SOC mineralization for tea plantations at higher altitudes. In addition, Q10 were higher at lower temperatures (<20℃) than higher temperatures (>20℃), indicating that the mineralization was more sensitive to temperature rise at low temperatures. And, when the temperature was lower than 20℃, the sensitivity of the alpine meadow soil was significant higher than that of its counterpart. Whereas, as the temperature raised beyond 25℃, no significant difference was found between them. The dynamics of SOC mineralization appeared to fit a first-order kinetics function, while the SOC mineralization potential (Co) increased with increasing incubation temperature.
-
Key words:
- Soil organic carbon mineralization /
- tea plantation soil /
- temperature sensitivity /
- Q10
-
表 1 试验地茶园基本情况
Table 1. Basic properties of tea plantations under investigation
土壤类型 树龄/a 茶树品种 树势 海拔/m 黄壤 8 水仙 中 385 高山草甸土 10 本地菜茶 好 1120 表 2 供试土壤基础理化性状
Table 2. Basic agro-chemical properties of soils under study
土壤类型 有机碳/(g·kg-1) 可溶性有机碳/(mg·kg-1) 微生物量碳/(mg·kg-1) 全氮/ (g·kg-1) 容重/(g.cm-3) C/N pH 砂粒/% 粉粒/% 粘粒/% 黄壤 23.52 44.17 135.67 1.71 1.06 13.75 4.18 15.97 58.43 25.60 高山草甸土 36.60 77.89 209.32 3.46 0.92 10.58 4.52 35.00 47.65 17.35 表 3 培养期间土壤有机碳矿化速率的回归分析
Table 3. Mathematic equation of SOC mineralization during incubation
土壤类型 处理/℃ 回归方程 相关系数R2 黄壤 10 Y=-26.53ln(x)+65.98 0.97** 20 Y=-55.19ln(x)+129.85 0.96** 30 Y= -61.55ln(x)+151.50 0.97** 高山草甸土 10 Y=-50.48ln(x)+114.38 0.96** 20 Y=-116.92ln(x)+258.11 0.97** 30 Y=-155.72ln(x)+342.20 0.98** 注:式中Y: CO2-C矿化速率/(mg·kg-1·d-1);x:培养时间/d。**P<0.01。 表 4 培养温度和土壤类型对有机碳矿化的影响
Table 4. Effect of temperature and soil type on SOC mineralization
因素 F值 累积矿化量 矿化比例 土壤类型 138.81** 4.27 培养温度 230.55** 164.01** 土壤类型×培养温度 15.04** 0.53 注:**表示 P<0.01 水平下差异显著。 表 5 土壤有机碳矿化的一级动力学参数
Table 5. Parameters on first-order kinetics of SOC mineralization
土壤类型 处理/℃ C0/(mg·kg-1) K(d-1) C0/SOC/% R2 黄壤 10 803.45c 0.063b 3.42c 0.96 20 1217.36b 0.084c 5.18b 0.97 30 1691.84a 0.069b 7.19a 0.98 高山草甸土 10 895.08c 0.10b 2.45c 0.99 20 1778.43b 0.13ab 4.86b 0.98 30 2315.99a 0.14a 6.33a 0.97 -
[1] LAL R. Soil carbon sequestration impacts on global climate change and food security[J].Science,2004, 304:1623-1627. doi: 10.1126/science.1097396 [2] HASHIMOTO S, TANAKA N, SUZUKI M, et al. Soil respiration and soil CO2 concentration in a tropical forest, Thailand[J].Journal of Forest Research, 2004, 9(1):75-79. doi: 10.1007/s10310-003-0046-y [3] 刘绍辉, 方精云. 土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报, 1997, 17(5):469-476. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB705.002.htm [4] 李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J].土壤学报2004,41(4):544-552. http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200404007.htm [5] 时秀焕, 张晓平, 梁爱珍,等. 利用最小限制水分范围评价短期免耕对黑土有机碳矿化的影响[J]. 中国农业科学, 2010, 43(20):4207-4213. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201020012.htm [6] 林杉, 陈涛, 赵劲松,等. 不同培养温度下长期施肥水稻土的有机碳矿化特征[J].应用生态学报,2014, 25(5):1340-1348. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201405016.htm [7] EN C I, Al-KAISI M M, WANG L, et al. Soil Organic Carbon Mineralization as Affected by Cyclical Temperature Fluctuations in a Karst Region of Southwestern China[J].Pedosphere,2015, 25(4):512-523. doi: 10.1016/S1002-0160(15)30032-1 [8] ZHANG Y J, GUO S L, ZHAO M, et al. Soil moisture influence on the interannual variation in temperature sensitivity of soil organic carbon mineralization in the Loess Plateau[J]. Biogeosciences Discussions, 2015, 12(2):1453-1474. doi: 10.5194/bgd-12-1453-2015 [9] ZHAO H, TONG D Q, LIN Q, et al. Effect of fires on soil organic carbon pool and mineralization in a Northeastern China wetland[J]. Geoderma,2012,190(6):532-539. http://cn.bing.com/academic/profile?id=2070300487&encoded=0&v=paper_preview&mkt=zh-cn [10] 郝瑞军, 李忠佩, 车玉萍. 苏南水稻土有机碳矿化特征及其与活性有机碳组分的关系[J].长江流域资源与环境, 2010, 19(9):1069-1074. http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201009016.htm [11] 李顺姬, 邱莉萍, 张兴昌.黄土高原土壤有机碳矿化及其与土壤理化性质的关系[J].生态学报,2010, 30(5):1217-1226. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201005014.htm [12] WEI Z Q, SHAO-HUA W U, ZHOU S L, et al. Soil Organic Carbon Transformation and Related Properties in Urban Soil Under Impervious Surfaces[J]. Pedosphere, 2014, 24(1):56-64. doi: 10.1016/S1002-0160(13)60080-6 [13] 任秀娥, 童成立, 孙中林,等. 温度对不同粘粒含量稻田土壤有机碳矿化的影响[J]. 应用生态学报, 2007, 18(10):2245-2250. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200710016.htm [14] XIUCANG L I, TONG JIANG, QINGCHEN CHAO, et al. The Core Conclusions and Interpretation of Working Group Ⅱ Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[J]. Chinese Journal of Urban & Environmental Studies, 2015, 3(1):1-10. http://cn.bing.com/academic/profile?id=2229491599&encoded=0&v=paper_preview&mkt=zh-cn [15] 马昕昕, 许明祥, 杨凯. 黄土丘陵区刺槐林深层土壤有机碳矿化特征初探[J].环境科学,2012, 33(11):3893-3900. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201211030.htm [16] 王嫒华, 苏以荣, 李杨,等. 稻草还田条件下水田和旱地土壤有机碳矿化特征与差异[J].土壤学报,2011, 48(5):979-987. http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201105011.htm [17] ZHENG J, LI L, PAN G, et al. Potential aerobic C mineralization of a red earth paddy soil and its temperature dependence under long-term fertilizer treatments[J]. Soil Use Management, 2012, 28(2):185-193. doi: 10.1111/sum.2012.28.issue-2 [18] BORKEN W, MATZNER E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils[J]. Global Change Biology, 2009, 15(15):808-824. http://cn.bing.com/academic/profile?id=2041671416&encoded=0&v=paper_preview&mkt=zh-cn [19] 李玮. 茶园土壤有机碳动态及其矿化特征研究[D].雅安:四川农业大学, 2015. [20] 邬建红, 潘剑君, 葛序娟,等.不同土地利用方式下土壤有机碳矿化及其温度敏感性[J]. 水土保持学报, 2015(3):130-135. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201503025.htm [21] http://tea.ahnw.gov.cn/news/showzx.asp?id=/65101.农业部发布2015年中国茶叶种植生产情况[P/OL]. [22] 李世玉.中国茶园生态系统碳平衡研究[D].杭州:浙江大学,2010:61-63. [23] 马天娥, 魏艳春, 杨宪龙,等.长期施肥措施下土壤有机碳矿化特征研究[J]. 中国生态农业学报, 2016,(1):8-16. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201601002.htm [24] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000:147-161. [25] 窦晶鑫,刘景双,王洋,等.三江平原草甸湿地土壤有机碳矿化对C/N的响应[J].地理科学,2009,29(5):773-778. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200905026.htm [26] REICHSTEIN M, BEDNORZ F, BROLL G, et al. Temperature dependence of carbon mineralisation:conclusions from a long-term incubation of subalpine soil samples[J]. Soil Biology Biochemistry, 2000, 32(7):947-958. doi: 10.1016/S0038-0717(00)00002-X [27] HYVÖNEN R, ÅGREN G I, DALIAS P. Analysing temperature response of decomposition of organic matter[J]. Global Change Biology, 2005, 11(5):770-778. doi: 10.1111/gcb.2005.11.issue-5 [28] 黄宗胜,喻理飞,符裕红.喀斯特森林植被自然恢复过程中土壤可矿化碳库特征[J].应用生态学报,2012,23(8):2165-2170. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201208021.htm [29] ZHENG Z M, YU G R, FU Y L, et al. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content:A trans-China based case study[J]. Soil Biology Biochemistry, 2009, 41(7):1531-1540. doi: 10.1016/j.soilbio.2009.04.013 [30] 吴健利,刘梦云,赵国庆,等.黄土台塬土地利用方式对土壤有机碳矿化及温室气体排放的影响[J].农业环境科学学报,2016,35(5):1006-1015. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201605027.htm [31] 陈涛, 郝晓晖, 杜丽君,等. 长期施肥对水稻土土壤有机碳矿化的影响[J].应用生态学报,2008, 19(7):1494-1500. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200807016.htm [32] 王清奎, 汪思龙, 于小军,等. 常绿阔叶林与杉木林的土壤碳矿化潜力及其对土壤活性有机碳的影响[J]. 生态学杂志, 2007, 26(12):1918-1923. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200712001.htm [33] 李英臣, 宋长春, 侯翠翠,等. 氮可利用性对东北不同类型湿地土壤有机碳矿化的影响[J].地理科学, 2011, 31(12):1480-1486. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201112009.htm [34] 邱曦, 吕茂奎, 黄锦学,等. 不同培养温度下严重侵蚀红壤的有机碳矿化特征[J]植物生态学报, 2016, 40(3):236-245. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201603005.htm [35] 黄耀, 刘世梁, 沈其荣,等.环境因子对农业土壤有机碳分解的影响[J].应用生态学报,2002, 13(6):709-714. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200206015.htm [36] 樊金娟, 李丹丹, 张心昱,等.北方温带森林不同海拔梯度土壤碳矿化速率及酶动力学参数温度敏感性[J]. 应用生态学报, 2016(1):17-24. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201601003.htm [37] 高菲, 姜航, 崔晓阳. 小兴安岭两种森林类型土壤有机碳库及周转[J].应用生态学报,2015, 26(7):1913-1920. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201507001.htm [38] LEIFELD J, FUHRER J. The Temperature Response of CO2 Production from Bulk Soils and Soil Fractions is Related to Soil Organic Matter Quality[J]. Biogeochemistry, 2005, 75(3):433-453. doi: 10.1007/s10533-005-2237-4 [39] 徐汝民, 李忠佩, 车玉萍,等. 土地利用方式转变后灰色森林土有机碳矿化的温度响应特征[J].应用生态学报, 2009, 20(5):1020-1025. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200905002.htm