Research of Fonctuonal Region Involved in the Self-interaction of Rice Stripe Virus Coat Protein
-
摘要: 水稻条纹病毒(Rice stripe virus,RSV)的外壳蛋白(coat protein,CP)参与病毒转录、复制等多个生物学过程。病毒蛋白之间的互作对病毒侵染活性非常重要,在明确RSV外壳蛋白CP能够自身互作的基础上,通过构建CP蛋白N端、M区段和C端(CP-N、CP-M和CP-C)的酵母表达载体,利用酵母双杂交系统确定外壳蛋白CP自身互作的活性区段。结果表明,N端和C端第1~81个氨基酸是参与水稻条纹病毒CP蛋白自身互作的活性区段。这一研究结果不仅有助于加深理解RSV CP蛋白在病毒基因组稳定、复制过程中的作用,也有助于加深了解RSV、寄主和传播介体之间关系。Abstract: Coat protein of Rice stripe virus plays important roles in several biological processes, such as viral transcription and replication. Interactions among viral proteins are essential for viral infection activity on host and insect vectors. In the present study, yeast two-hybrid system was used to detect the functional region inolving in the self-interaction of the RSV coat protein (CP). It was revealed that N-and C-terminal 81 amino acid residues played an essential role in self-interaction of RSV CP. Our results will be contributed to better understanding not only for functions of CP on viral stabilization and replication in insect vectors or host plants, but also for the relationship among virus, insect vectors and host plants.
-
Key words:
- rice stripe virus /
- coat protein /
- yeast two-hybrid /
- protein interaction /
- functional region
-
图 2 酵母双杂交检测全长CP蛋白与CP-N、CP-M和CP-C的互作
注:A为SD/-Leu-Trp培养基;B为SD/-Leu-Trp-His培养基;C为SD/-Leu-Trp-His-Ade/X-α-Gal培养基。1为pGAD-CP-N/pGBK-CP;2为pGAD-CP-M/pGBK-CP;3为pGAD-CP-C/pGBK-CP;4为pGBK-CP-N/pGAD-CP;5为pGBK-CP-M/pGAD-CP;6为pGBK-CP-C/pGAD-CP;7为阴性对照 pGADT7-T/pGBK-Lam;8为阳性对照pGADT7-T/pGBKT7-53。
Figure 2. Detection of interaction between full length CP protein and CP-N,CP-M and CP-C by assays
-
[1] PARK H M, CHOI M S, KWAK D Y, et al. Suppression of NS3 and MP is important for the stable inheritance of RNAi-mediated Rice stripe virus (RSV) resistance obtained by targeting the fully complementary RSV-CP gene[J]. Molecules and cells, 2012, 33(1):43-51. doi: 10.1007/s10059-012-2185-5 [2] HUO Y, LIU W, ZHANG F, et al. Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector[J]. PLoS Pathog, 2014, 10(3):e1003949. doi: 10.1371/journal.ppat.1003949 [3] 林奇英, 谢联辉, 周仲驹, 等.水稻条纹叶枯病的研究I. 病害的分布和损失[J]. 福建农学院学报, 1990, 19(4):421-425. http://www.cnki.com.cn/Article/CJFDTOTAL-FJND199004008.htm [4] TORIYAMA S, TAKAHASHI M, SANO Y, et al. Nucleotide sequence of RNA 1, the largest genomic segment of Rice stripe virus, the prototype of the tenuiviruses[J]. Journal of General Virology, 1994, 75:3569-3579. doi: 10.1099/0022-1317-75-12-3569 [5] TAKAHASHI M, TORIYAMA S, HAMAMATSU C, et al. Nucleotide sequence and possible ambisense coding strategy of Rice stripe virus RNA segment 2[J]. Journal of General Virology, 1993, 74:769-773. doi: 10.1099/0022-1317-74-4-769 [6] XIONG R Y, WU J X, ZHOU Y J, et al. Identification of a movement protein of the tenuivirus Rice stripe virus[J]. Journal of virology, 2008, 82:12304-12311. doi: 10.1128/JVI.01696-08 [7] 林奇田, 林含新, 吴祖建, 等. 水稻条纹病毒外壳蛋白和病害特异蛋白在寄主体内的积累[J]. 福建农业大学学报, 1998, 27(3):322-6. http://www.cnki.com.cn/Article/CJFDTOTAL-FJND803.012.htm [8] 刘利华, 吴祖建, 林奇英, 等. 水稻条纹叶枯病细胞病理变化的观察[J]. 植物病理学报, 2000, (4):306-311. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWBL200004003.htm [9] LIU H, WEI C, ZHONG Y, et al. Rice black-streaked dwarf virus outer capsid protein P10 has self-interactions and forms oligomeric complexes in solution[J]. Virus research, 2007, 127(1):34342. http://cn.bing.com/academic/profile?id=2021376916&encoded=0&v=paper_preview&mkt=zh-cn [10] KANG S H, LIM W S, HWANG S H, et al. Importance of the C-terminal domain of soybean mosaic virus coat protein for subunit interactions[J]. Journal of general virology, 2006, 87(1):225-229. doi: 10.1099/vir.0.81499-0 [11] PAUL D, ROMERO-BREY I, GOUTTENOIRE J, et al. NS4B self-interaction through conserved C-terminal elements is required for the establishment of functional hepatitis C virus replication complexes[J]. Journal of virology, 2011, 85(14):6963-6976. doi: 10.1128/JVI.00502-11 [12] RUSERT P, KRARUP A, MAGNUS C, et al. Interaction of the gp120 V1V2 loop with a neighboring gp120 unit shields the HIV envelope trimer against cross-neutralizing antibodies[J]. The Journal of experimental medicine, 2011, 208(7):1419-1433. doi: 10.1084/jem.20110196 [13] WANG Y, ZHANG X. The nucleocapsid protein of coronavirus mouse hepatitis virus interacts with the cellular heterogeneous nuclear ribonucleoprotein A1 in vitro and in vivo[J]. Virology, 1999, 265(1):96-109. doi: 10.1006/viro.1999.0025 [14] SURJIT M, LIU B, KUMAR P, et al. The nucleocapsid protein of the SARS coronavirus is capable of self-association through a C-terminal 209 amino acid interaction domain[J]. Biochemical and biophysical research communications, 2004, 317(4):1030-1036. doi: 10.1016/j.bbrc.2004.03.154 [15] KAUKINEN P, KOISTINEN V, VAPALAHTI O, et al. Interaction between molecules of hantavirus nucleocapsid protein[J]. Journal of General Virology, 2001, 82(8):1845-1853. doi: 10.1099/0022-1317-82-8-1845 [16] 鹿连明, 秦梅玲, 谢荔岩, 等. 利用酵母双杂交系统研究水稻条纹病毒三个功能蛋白的互作[J]. 农业科学与技术, 2007, 1(1):5-12. [17] ALFADHLI A, LOVE Z, ARVIDSON B, et al. Hantavirus nucleocapsid protein oligomerization[J]. Journal of virology, 2001, 75(4):2019-2023. doi: 10.1128/JVI.75.4.2019-2023.2001 [18] ELLIOTT R M. Molecular biology of the Bunyaviridae[J]. Journal of General Virology, 1990, 71(3):501-522. doi: 10.1099/0022-1317-71-3-501 [19] MIR M A, PANGANIBAN A T. Trimeric hantavirus nucleocapsid protein binds specifically to the viral RNA panhandle[J]. Journal of virology, 2004, 78(15):8281-8288. doi: 10.1128/JVI.78.15.8281-8288.2004 [20] LEONARD V H J, KOHL A, OSBORNE J C, et al. Homotypic interaction of Bunyamwera virus nucleocapsid protein[J]. Journal of virology, 2005, 79(20):13166-13172. doi: 10.1128/JVI.79.20.13166-13172.2005 [21] 邓萍, 刘小娟, 杨靓, 等. 水稻条纹病毒(RSV)外壳蛋白(CP)自身互作位点和亚细胞定位区域的鉴定[J]. 农业生物技术学报, 2015, 23(11):1421-1429.