Effects of Cd Stress on Biomass and Photosynthesis Fluorescence Characteristics of Magnolia officinalis
-
摘要: 以2年生的凹叶厚朴幼苗为试验对象,设置0(CK)、50、100、200和300 mg·kg-1等5个梯度,研究Cd胁迫对厚朴幼苗生物量、叶绿素SPAD值、各组织部分Cd含量和叶绿素荧光合特性的影响。厚朴幼苗根干质量Cd积累最高达325.76 mg·kg-1,地上部分干质量Cd积累最高仅为13.56 mg·kg-1,而根部Cd积累量占到全株Cd积累量的95.71%~96.23%,其地下组织部分Cd含量高于地上组织部分,说明厚朴幼苗根吸收的镉主要积累在根部。厚朴幼苗株高增长量随Cd含量的增加而下降,在高Cd胁迫下,叶绿素SPAD值呈差异极显著变化,低Cd胁迫下厚朴仍能生长和代谢,说明厚朴有一定的适应性。4个Cd处理下厚朴幼苗的PSⅡ的最大量子产量(Fv/Fm)、实际的光化学有效量子产量(ΦPSⅡ)、化学淬灭(qP)、电子传递效率(ETR)与CK组相比均显著下降,说明Cd处理阻碍了凹叶厚朴叶片光合反应链中电子传递,进而影响PSⅡ反应中心活性,改变了对光能捕获与转换及电子传递效率,产生光抑制,进而造成对植物的损伤。Abstract: Two-year-old Magnolia officinalis seedlings were used in this experimentation. Effects of Cd stress on the biomass, chlorophyll SPAD value, and chlorophyll fluorescence characteristics, as well as Cd contents in various parts of the plant, under 5 gradients of Cd stress including 0 (CK), 50, 100, 200, and 300 mg·kg-1 were studied to unveil the underlying mechanism. In the seedling plants and parts, it was found that the highest accumulated Cd concentrations (dry weight) were 325.76 mg·kg-1 in the roots, and 13.56 mg·kg-1 in the aboveground parts. In general, 95.71%-96.23% of the total Cd accumulated on the plant were found in the roots. The seedling height decreased with increasing Cd concentration. Compared with CK, all treatment groups except 50 mg·kg-1, showed significant decreases on SPAD chlorophyll. When the Cd concentration was low, the plants appeared to adapt and continue to grow and metabolize. Nonetheless, the PSII maximum quantum yield (Fv/Fm), actual photochemical quantum yield (ΦPSⅡ), chemical quenching (qP), and electron transport efficiency (ETR) were significantly decreased due to high Cd stress as compared to CK indicating that the energy capture from the sunlight, ETR, PSII activity, and metabolism were all suppressed resulting in damage to the plant.
-
表 1 福建省农林大学林学院苗圃试验地土壤基本理化性质
Table 1. Physio-chemical properties of soils in nursery experiment at Fujian Agriculture and Forestry University
pH值 有机质/% 全氮/(g·kg-1) 全磷/(g·kg-1) 全钾/(g·kg-1) 水解氮 有效磷(P2O5) /(g·kg-1) 速效钾(k2O) /(g·kg-1) 7.03 2.15 1.388 1.103 16.604 30.73 30.63 127.53 表 2 不同Cd胁迫下厚朴幼苗生物量及各组织部分Cd含量(x±s)
Table 2. Biomass and Cd content of tissues of seedlings under varied Cd stresses
Cd胁迫/(mg·kg-1) 根 地上部分 株高增长量/(cm·株-1) 干质量/(g·株-1) Cd含量/(mg·kg-1) 干质量/(g·株-1) Cd含量/(mg·kg-1) 0(CK) 12.8075±0.2443a 0 20.3625±0.2572a 0 29.6625±0.0625a 50(Cd1) 12.35±0.1335a 210.8925±0.8071a 16.845±0.2796b 9.265±0.0556a 30.295±0.2706a 100(Cd2) 11.2825±0.2643b 241.405±0.6018b 13.095±0.0633c 9.4525±0.0417b 28.25±0.3109b 200(Cd3) 9.9075±0.3456c 279.7675±0.569c 11.3375±0.2445d 12.5525±0.1191c 25.9025±0.3398c 300(Cd4) 7.27±0.3603d 312.1875±0.632d 8.8075±0.3924e 13.575±0.0854c 24.375±0.0328d 注:同列数据后不同小写字母代表0.05水平差异显著。下表同。 表 3 不同Cd胁迫对厚朴幼苗叶片鲜叶绿素SPAD含量的变化
Table 3. Changes on SPAD content of young leaves of magnolia Officinalis under Cd stress
Cd胁迫/(mg·kg-1) 叶绿素SPAD值 0 41.9833±0.92a 50 39.8833±0.7986ab 100 38.1667±0.9672ab 200 36.6833±1.6655b 300 35.85±1.1882b -
[1] MORENO-CASEI LES J,MORAL. A,PEREZ-ESPLNOSA R.Cadmium accumulation and distribution in cucumber plant[J]. Journal of Plant Nutrition, 2000,23(2):243-350. doi: 10.1080/01904160009382011 [2] VASSILEV A, TSONEV T, YORDANOV I. Physiological response of barley plants(hordeum vulgare)to cadmium contamination in soil during ontogcncsis[J]. Environmental Pollution, 1998,103(2/3):287-293. http://cn.bing.com/academic/profile?id=2139429339&encoded=0&v=paper_preview&mkt=zh-cn [3] LUX A, MARTINKA M, VACULIK M, et al. Root responses to cadmium in the rhizospherc:a rcvicw[J]. Journal of Expcrimcntal Botany,2011,62(1):21-37. doi: 10.1093/jxb/erq281 [4] DALCORSO G. Heavy Metal Toxicity in Plants[M]. Furini A.Plants and Heavy Metals.New York:Springer Press,2012:1-26. [5] 张鑫,李昆伟,陈康健,等. 镉胁迫对丹参生长及有效成分积累的影响研究[J]. 植物科学学报,2013,(6):583-589. http://www.cnki.com.cn/Article/CJFDTOTAL-WZXY201306010.htm [6] GENTY B,BRIANTAIS J M,BAKER N R.The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica and Biophysica Acta,1989,990(1):87-92. doi: 10.1016/S0304-4165(89)80016-9 [7] BDEMMIG-ADAMS,WW ADAMS. XanthophyⅡ cycle and light stress in nature; uniform response to excess direct sunlight among higher plant species[J]. Planta, 1996,198(3):160-170. http://cn.bing.com/academic/profile?id=2027115096&encoded=0&v=paper_preview&mkt=zh-cn [8] NMAXWELL K,JOHNSON G N.Chlorophyll fluorescence-a practical quide[J]. Journal of Experimental Botany,2000,51(315):659-668. http://cn.bing.com/academic/profile?id=2132527497&encoded=0&v=paper_preview&mkt=zh-cn [9] 国家药典委员会.中华人民共和国药典:一部[M]. 北京:化学化工出版社,2005. [10] LIANG Q H,HUANG W H,JARIS P. Use of a SPAD meter to measure leaf chlorphy 2 concentration in Arabidopsis thaliana[J]. Photosynth Res,2011,107:209. doi: 10.1007/s11120-010-9606-0 [11] 朱宇林,曹福亮,汪贵斌,等. Cd、Pb胁迫对银杏光合特性的影响[J]. 西北林学院学报,2006,(1):47-50. http://www.cnki.com.cn/Article/CJFDTOTAL-XBLX200601009.htm [12] 贾中民,程华,魏虹,等. 三峡库区岸生植物秋华柳对镉胁迫的光合响应[J]. 林业科学,2012,(6):152-158. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201206026.htm [13] PRASAD M N V.Heavy metal stress in plants:from biomolecules to ecosystems[M]. Second Edition.Berlin:Springer Press,2004:48-170. [14] DAHMANI-MULLER H, et al. Strategies of heavy metal uptake by three plant species growing near a metal smelter[J]. Environmental Pollution, 2000. 109(2):p. 231-238. doi: 10.1016/S0269-7491(99)00262-6 [15] STOLTZ E,GREGER M. Accumulation properties of As,Cd,Cu,Pb and Zn by four wetland plant species growing on submerged mine tailings[J]. Environmental and experimental botany,200247(3):271-280. doi: 10.1016/S0098-8472(02)00002-3 [16] 宋波,高定,陈同斌,等. 北京市菜地土壤和蔬菜铬含量及其健康风险评估[J]. 环境科学学报,2006,(10):1707-1715. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200610024.htm [17] 郭燕梅,王昌全,李冰.重金属镉对植物的毒害研究进展[J]. 陕西农业科学,2008,(3):122-125. http://www.cnki.com.cn/Article/CJFDTOTAL-SNKX200803048.htm [18] CHUTZENDUBEL A,SCHWANZ P,MATYSIK J,et al. Cadmium induced changes in antioxidative systems, hydrogen peroxide content and differentiation in,scots pine roots[J]. Plant Physiology, 2001,127:887-898. doi: 10.1104/pp.010318 [19] RUONG P N V,CLARIDGE J.Effects of heavy metals toxicities on vetiver growth[J]. Vetiver Newsletter,1996. 1532-36. [20] 孙赛初,王焕校,李启任. 水生维管束植物受镉污染后的生理变化及受害机制初探[J]. 植物生理学报,1985,(2):113-121. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSI198502000.htm [21] KAZNINA N M, LAIDINEN G F,TITOV A F, et al.Effect of lead on the photosynthetic apparatus of annual grasses[J]. Biol Bull,2005,32(2):147. doi: 10.1007/s10525-005-0022-5 [22] BARCELO J, POSCHENRIEDER CH, ANDREU I, et al. Cadmium Induced Decrease of Water Stress Resistance in Bush Bean Plants(Phaseolus vulgaris L,cv.Contender).1:Effects of Cd on Water Potential,Relative Water Content,and Cell Wall Elasticity[J].Journal of Plant Physiology, 1986,125(1/2):17-25. [23] 万雪琴,张帆,夏新莉,等. 镉胁迫对杨树矿质营养吸收和分配的影响[J]. 林业科学,2009,(7):45-51. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE200907009.htm [24] 蒋文智,黎继岚. 镉对烟草光合特性的影响[J]. 植物生理学通讯,1989,(6):27-31. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL198906007.htm [25] 蒋文智,黎继岚. 镉对光合器膜系统结构的影响[J]. 云南大学学报:自然科学版,1992,(3):318-323. http://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ199203018.htm