The Effects of Some Plant Growth Regulators on Nicotiana tabacum Affected by the Residue of Bensulfuron-methyl
-
摘要: 苄嘧磺隆是一种低毒高效安全的磺酰脲类除草剂,但由于其过度使用在土壤中所形成的残留同样对于后茬敏感作物会产生危害。本研究分析一些植物生长调节剂及其抑制剂对受到苄密磺隆残留危害的烟草生长的影响,设计不同的处理组与对照组在症状出现时间、植株长势以及恢复正常生长方面进行比较。试验中发现茉莉酸(JA)、水杨酸(SA)及它们的抑制剂水杨羟肟酸(SHAM)、二乙基二硫代氨基甲酸二乙胺盐(DIECA)后烟草仍然会出现由于苄密磺隆残留导致的症状如叶片畸形、卷曲、质地脆硬以及黄化。但在其后生长调节方面,施用SA的处理组烟草长势最良好,在特定的试验时间段内(处理及施药后20 d内)恢复正常生长的能力最好。相反SHAM与DIECA混合施用下的烟草长势不仅没有得到改善,长势甚至弱于仅用溶剂施用的处理组,且没有样本恢复正常生长。试验结果表明SA可以明显有利于受到土壤中苄嘧磺隆危害下烟草的生长。但是SA的施用方案有待进一步优化以实现更好的效果。Abstract: Bensulfuron-methyl (BSM) is a kind of herbicide of low toxicity, high efficiency and safety, but the residue of herbicide still can cause hazardous to succeeding crops in the field due to the intensive utilization. It was analyzed in this research that the effects brought by some kinds of plant growth regulators on the tobaccos affected by the residue of BSM, and the time of symptom-emergency, the growth vigor as well as the growth-recovering were compared between different treated and control groups. Symptoms caused by BSM on tobaccos cannot prevented by variety kinds of plant regulators and inhibitors i.e. jasmonic acid (JA), salicylic acid (SA), salicylhydroxamic acid (SHAM), diethyldithiocarbamic acid (DIECA). However, SA can improve the growth of affected plants, and the ratio of recovered herbicide-treated plants sprayed with SA was the highest. To the contrast, the growth of the herbicide-treated group couldn't gain any improvement sprayed with SHAM and DIECA, which was even weaker than the herbicide-treated tobaccos sprayed with solutions, and the recovered ratio was zero. Thus we found that SA can improve the growth of the plants suffered from the residue problem brought by BSM significantly. But the method of SA-application should be improved to gain a better results.
-
Key words:
- bensulfutron-methyl /
- Nicotiana tabacum /
- plant growth regulators
-
表 1 不同植物生长调节剂处理下的烟草进行苄嘧磺隆毒土处理症状出现时间比较
Table 1. The comparison of interval time of symptom-emergency caused by the residue of bensulfuron-methyl of N. tabacum sprayed with variety kinds of plant growth regulators
施用生长调节剂 WATER JA SA SHAM DIECA SHAM+DIECA 症状出现时间 2.250±0.144 a 2.400±0.190 a 2.438±0.182 a 2.063±0.250 a 2.188±0.136 a 2.063±0.250 a 注:同行数据后不同小写字母表示差异达显著水平,下表同。 表 2 喷施不同生长调节剂后,经过毒土处理后的烟草第1、2、3片叶叶长
Table 2. The length of 1st, 2nd and 3rd leaves of each group of N. tabacum treated with variety kinds of plant growth regulators and herbicide in the soil(单位/cm)
时间 叶位 施用生长调节剂 CK JA SA SHAM DIECA SHAM+DIECA WATER 药剂处理
后5 d1 4.581±0.532a 3.925±0.450ab 4.025±0.414ab 3.250±0.438ab 2.488±0.474b 3.225±0.656ab 2.825±0.546b 2 9.600±0.520a 7.769±0.221b 8.419±0.319b 8.119±0.351b 7.881±0.347b 7.838±0.416b 7.431±0.400b 3 10.286±0.387a 7.438±0.391c 8.819±0.581b 8.406±0.579bc 7.981±0.474bc 7.688±0.535bc 7.738±0.486bc 药剂处理
后10 d1 3.938±0.429a 1.900±0.479bc 2.381±0.497b 1.744±0.487bc 2.606±0.473b 0.806±0.467c 1.244±0.379bc 2 10.431±0.519a 6.138±0.629b 4.963±0.790bc 4.700±0.883bc 4.988±0.682bc 3.413±0.754c 4.463±0.609bc 3 14.038±0.515a 9.144±0.322bc 9.506±0.535b 9.419±0.831b 8.981±0.775bc 7.513±0.667bc 9.250±0.454c 药剂处理
后15 d1 6.706±0.387a 1.644±0.475c 3.438±0.555b 2.506±0.694bc 2.275±0.448bc 1.756±0.497c 1.731±0.487c 2 14.163±0.516a 4.425±0.715c 7.950±0.838b 5.250±0.993c 6.094±0.847bc 3.769±0.865c 5.006±0.819c 3 17.319±0.520a 7.025±0.895cd 10.125±0.865b 7.163±1.192cd 8.625±1.197bc 4.356±1.072d 7.100±0.830cd 药剂处理
后20 d1 5.108±0.724a 2.631±0.603ab 3.731±0.946ab 3.815±0.925ab 4.646±0.876ab 2.431±1.003b 2.385±0.595b 2 13.339±0.833a 5.139±1.023c 8.231±1.229bc 6.439±1.521bc 9.654±1.563b 4.977±1.331c 5.700±0.906c 3 17.531±1.352a 7.231±1.226c 12.108±1.586b 9.815±1.354bc 11.800±1.971bc 7.115±1.667c 10.462±1.233bc 注:CK为没有喷施任何植物生长调节剂与毒土处理。表 3同。 表 3 喷施不同生长调节剂后,经过毒土处理后的烟草第1、2、3片叶叶宽
Table 3. The width of 1st, 2nd and 3rd leaves of each group of N. tabacum treated with variety kinds of plant growth regulators and herbicide in the soil(单位/cm)
时间 叶位 施用生长调节剂 CK JA SA SHAM DIECA SHAM+DIECA WATER 药剂处理
后5 d1 2.319±0.295ab 2.513±0.303ab 2.681±0.333a 2.238±0.342ab 1.550±0.2947b 2.063±0.416ab 1.769±0.341ab 2 5.413±0.257a 5.069±0.105ab 5.125±0.228ab 5.063±0.316ab 4.857±0.263ab 5.063±0.273ab 4.544±0.319b 3 5.894±0.188a 4.625±0.269b 5.094±0.331ab 5.219±0.279ab 4.994±0.282b 4.850±0.292b 4.869±0.249b 药剂处理
后10 d1 1.775±0.234a 1.1813±0.303ab 1.075±0.274ab 0.969±0.300b 1.313±0.316ab 0.175±0.145c 0.594±0.182bc 2 5.625±0.321a 4.05±0.441b 2.838±0.488bc 3.219±0.609bc 2.863±0.351bc 1.994±0.434c 2.900±0.371bc 3 7.969±0.226a 5.9875±0.182bc 5.744±0.351bc 6.431±0.454b 5.481±0.536bc 5.069±0.450c 5.513±0.286bc 药剂处理
后15 d1 2.769±0.235a 0.725±0.233b 0.975±0.196b 0.663±0.281b 0.663±0.167b 0.369±0.124b 0.413±0.155b 2 7.48±0.287a 2.206±0.426bc 3.050±0.494b 1.694±0.461c 2.331±0.326bc 1.131±0.283c 1.606±0.460c 3 9.588±0.336a 4.394±0.545b 4.644±0.597b 3.438±0.562bc 4.150±0.658b 2.031±0.472c 3.256±0.456bc 药剂处理
后20 d1 2.377±0.664a 0.515±0.174b 1.292±0.371b 0.777±0.274b 1.192±0.302b 0.223±0.107b 0.662±0.260b 2 6.162±0.477a 1.177±0.416bc 2.592±0.609b 1.369±0.509bc 2.492±0.649b 0.823±0.368c 1.039±0.335c 3 9.623±0.524a 2.477±0.511bc 3.677±0.843b 2.600±0.666bc 4.154±0.832b 1.177±0.318c 1.785±0.695c 表 4 使用不同植物生长调节剂后20 d内,各苄嘧磺隆处理组烟草症状消失指标
Table 4. The indexes of symptom-vanishing of N. tabacum under the treatments of bensulfuron-methyl post the spraying of variety kinds of plant growth regulators
施用生长调节剂 WATER JA SA SHAM DIECA SHAM+DIECA 症状消失指标 0.125±0.085 ab 0.125±0.085 ab 0.375±0.125 a 0.188±0.101 ab 0.188±0.101 ab 0.000±0.000 b 注:在苄嘧磺隆毒土后20 d内症状消失,恢复正常生长的烟草标记为1,不能恢复正常生长的烟草标记为0,对得到的结果进行单因素ONE-WAY ANOVA分析后,得到上述结果。 -
[1] LIN X, YANG Y, ZHAO Y, et al. Biodegradation of bensulfuron-methyl and its effect on bacterial community in paddy soils[J]. Ecotoxicology, 2012, 21(5):1281-1290. doi: 10.1007/s10646-012-0882-7 [2] MIAO S S, WU M S, ZUO H G, et al. Core-shell magnetic molecularly imprinted polymers as sorbent for sulfonylurea herbicide residues[J]. J Agric Food Chem, 2015, 63(14):3634-3645. doi: 10.1021/jf506239b [3] 李晶晶.土壤中苄嘧磺隆残留量的检测及生物降解的研究[D].福州:福建农林大学, 2014. [4] 李阳阳.苄嘧磺隆降解菌株的分离、降解特性及降解途径研究[D].南京:南京农业大学, 2013. [5] 付艳艳.苄嘧磺隆和烟嘧磺隆对土壤中微生物活性的影响[D].重庆:西南大学, 2013. http://cdmd.cnki.com.cn/article/cdmd-10635-1013270451.htm [6] 林秋仙.烟草除草剂药害和硼害诊断与除草剂残留检测[D].福州:福建农林大学, 2012. http://cdmd.cnki.com.cn/article/cdmd-10389-1012425477.htm [7] ZHU F, XI D H, YUAN S, et al. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana[J]. Mol Plant Microbe Interact, 2014, 27(6):567-577. doi: 10.1094/MPMI-11-13-0349-R [8] LIAO Y, TIAN M, ZHANG H, et al. Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against tobacco mosaic virus in tomato[J]. New Phytol, 2015, 205(3):1296-1307. doi: 10.1111/nph.13137 [9] TURNER J G, ELLIS C, DEVOTO A. The Jasmonate Signal Pathway[J]. The Plant Cell, 2002, (S1):153-164. [10] CHEN Z, ZHENG Z, HUANG J, et al. Biosynthesis of salicylic acid in plants[J]. Plant Signaling & Behavior, 2009, 4(6):493-496. [11] YANG L, LI B, ZHENG X, et al. Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids[J]. Nature Communications, 2015, (6):7309. http://www.ncbi.nlm.nih.gov/pubmed/26265083 [12] LYONS R, MANNERS J M, KAZAN K.Jasmonate biosynthesis and signaling in monocots: a comparative overview[J]. Plant Cell Reports, 2013, 32(6):815-827. doi: 10.1007/s00299-013-1400-y [13] CUI H, SUN Y, SU J, et al. Reduction in the fitness of Bemisia tabaci fed on three previously infested tomato genotypes differing in the jasmonic acid pathway[J]. Environ Entomol, 2012, 41(6):1443-1453. doi: 10.1603/EN11264 [14] OKADA K, ABE H, ARIMURA G I. Jasmonates Induce Both Defense Responses and Communication in Monocotyle-donous and Dicotyledonous Plants[J]. Plant and Cell Physiology, 2015, 56(1):16-27. doi: 10.1093/pcp/pcu158 [15] ALON M, MALKA O, EAKTEIMAN G, et al. Activation of the Phenylpropanoid pathway in Nicotiana tabacum improves the performance of the whitefly Bemisia tabaci via reduced jasmonate signaling[J]. PLoS One, 2013, 8(10):e76619. https://www.researchgate.net/profile/Osnat_Malka/publication/258350679_Activation_of_the_Phenylpropanoid_Pathway_in_Nicotiana_tabacum_Improves_the_Performance_of_the_Whitefly_Bemisia_tabaci_via_Reduced_Jasmonate_Signaling/links/00b7d53197151f29dd000000.pdf?origin=publication_detail [16] OKA K, KOBAYASHI M, MITSUHARA I, et al. Jasmonic acid negatively regulates resistance to Tobacco mosaic virus in tobacco[J]. Plant Cell Physiol, 2013, 54(12):1999-2010. doi: 10.1093/pcp/pct137 [17] ZHU F, XI D H, YUAN S, et al. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana[J]. Mol Plant Microbe Interact, 2014, 27(6):567-577. doi: 10.1094/MPMI-11-13-0349-R [18] DE VOS M, JANDER G.Myzus persicae(green peach aphid) salivary components induce defence responses inArabidopsis thaliana[J]. Plant, Cell & Environment, 2009, 32(11):1548-1560. https://www.researchgate.net/publication/26322868_Myzus_persicae_green_peach_aphid_salivary_components_induce_defence_responses_in_Arabidopsis_thaliana [19] ZHU F, XI D, YUAN S, et al. Salicylic Acid and Jasmonic Acid Are Essential for Systemic Resistance AgainstTobacco mosaic virus in Nicotiana benthamiana[J]. Molecular Plant-Microbe Interactions, 2014, 27(6):567-577. doi: 10.1094/MPMI-11-13-0349-R [20] SONG N H, YIN X L, CHEN G F, et al. Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils[J]. Chemosphere, 2007, 68(9):1779-1787. doi: 10.1016/j.chemosphere.2007.03.023 [21] CUI J, ZHANG R, WU G L, et al. Salicylic Acid Reduces Napropamide Toxicity by Preventing Its Accumulation in Rapeseed (Brassica napus L.)[J]. Archives of Environmental Contamination and Toxicology, 2010, 59(1):100-108. doi: 10.1007/s00244-009-9426-4 [22] LU Y C, ZHANG S, YANG H. Acceleration of the herbicide isoproturon degradation in wheat by glycosyltransferases and salicylic acid[J]. J Hazard Mater, 2015, 283:806-814. doi: 10.1016/j.jhazmat.2014.10.034 [23] LU Y C, ZHANG S, MIAO S S, et al. Enhanced degradation of Herbicide Isoproturon in wheat rhizosphere by salicylic acid[J]. J Agric Food Chem, 2015, 63(1):92-103. doi: 10.1021/jf505117j [24] GROSSMANN K, ROSENTHAL C, KWIATKOWSKI J. Increases in jasmonic acid caused by indole-3-acetic acid and auxin herbicides in cleavers (Galium aparine)[J]. J Plant Physiol, 2004, 161(7):809-814. doi: 10.1016/j.jplph.2003.12.002 [25] XIN Z, ZHANG Z, CHEN Z, et al. Salicylhydroxamic acid (SHAM) negatively mediates tea herbivore-induced direct and indirect defense against the tea geometrid Ectropis obliqua[J]. J Plant Res, 2014, 127(4):565-572. doi: 10.1007/s10265-014-0642-2 [26] CHIVASA S, MURPHY A M, NAYLOR M, et al. Salicylic Acid Interferes with Tobacco Mosaic Virus Replication via a Novel Salicylhydroxamic Acid-Sensitive Mechanism[J]. Plant Cell, 1997, 9(4):547-557. doi: 10.1105/tpc.9.4.547 [27] YAMADA S, KANO A, TAMAOKI D, et al. Involvement of OsJAZ8 in Jasmonate-Induced Resistance to Bacterial Blight in Rice[J]. Plant and Cell Physiology, 2012, 53(12):2060-2072. doi: 10.1093/pcp/pcs145 [28] MITTLER R. Oxidative stress, antioxidants and stress tolerance[J]. Trends Plant Sci, 2002, 7(9):405-410. doi: 10.1016/S1360-1385(02)02312-9 [29] HORVÁTH E, SZALAI G, JANDA T. Induction of Abiotic Stress Tolerance by Salicylic Acid Signaling[J]. Journal of Plant Growth Regulation, 2007, 26(3):290-300. doi: 10.1007/s00344-007-9017-4 [30] 王利军, 战吉成, 黄卫东.水杨酸与植物抗逆性[J].植物生理学通讯, 2002, 38(6):619-624. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNB200709016.htm