Cloning and Expression Analysis of Ring-type E3 Ubiquitin Ligase Gene in Camellia sinensis cv. Tieguanyin Under Drought Stress
-
摘要: 以铁观音茶树为试材,对其中E3泛素连接酶基因进行克隆和生物信息学分析,并采用qPCR进行不同干旱条件下的定量表达分析。研究结果表明,该序列全长为1 138 bp,开放阅读框(ORF)为810 bp,编码269个氨基酸(GenBank登录号KR819177)。生物信息学分析发现该铁观音茶树E3泛素连接酶基因不含跨膜结构以及信号肽,具有多个磷酸化位点,亚细胞定位于叶绿体中。经BLAST比对,该基因编码的氨基酸序列与烟草、亚麻荠、葡萄、醉蝶花、芜菁中的E3泛素连接酶基因编码的氨基酸序列分别有51%、50%、50%、50%和49%的同源性,且相关保守功能结构域翻译的蛋白质序列具有RING-finger结构,初步确定该基因为铁观音茶树的E3泛素连接酶基因。qPCR分析结果显示在不同干旱胁迫处理下铁观音茶树的E3泛素连接酶基因的表达量,与对照组相比显著增加。本研究认为铁观音茶树RING型E3泛素连接酶基因参与茶树抗旱响应机制。
-
关键词:
- 铁观音 /
- RING型E3泛素连接酶 /
- 基因克隆 /
- 干旱胁迫 /
- qPCR
Abstract: The E3 ubiquitin ligase gene from Camellia sinensis cv.Tieguanyin tea plants were cloned and subjected to a bioinformatics analysis. Under varied drought conditions on the plants, the quantitative expressions of the gene was determined using qPCR. The gene sequence (GenBank accession number, KR819177) was found to be 1 138 bp long containing an open reading frame (ORF) of 810 bp and encoding 269 amino acids. The bioinformatics revealed that the ligase gene did not have a transmembrane or signal peptide but multiple phosphorylation sites, and that its subcellular cells located in the chloroplasts. Its nucleotide and deduced amino acid sequences showed 51%, 50%, 50%, 50%, and 49% homology with the E3 ubiquitin ligase genes from Nicotiana sylvestris, Camelina sativa, Vitis vinifera, Tarenaya hassleriana, and Brassica rapa, respectively; while its conserved functional domains related to the translated protein sequences had a RING-finger structure. Consequently, it was preliminarily identified as the E3 ubiquitin ligase gene of C. sinensis cv. Tieguanyin. Subsequently, the qPCR analysis indicated that the transcript of this gene, when the tea plant was under varied drought stresses, was significantly more up-regulated than control. Hence, it was concluded that the previously identified RING-type E3 ubiquitin ligase gene found in C.sinensis cv. Tieguanyin indeed involved in the drought response mechanism of the plant.-
Key words:
- Camellia sinensis cv. tieguanyin /
- RING-type E3 ubiquitin ligase /
- gene cloning /
- drought stress /
- qPCR
-
表 1 干旱胁迫试验处理
Table 1. Treatments of drought stress
编号 处理水平 土壤含水量:田间持水量
/%CK 正常供水 80±5 T1 轻度干旱胁迫 60±5 T2 中度干旱胁迫 40±5 T3 重度干旱胁迫 20±5 -
[1] 宁约瑟, 王国梁, 谢旗.泛素连接酶E3介导的植物干旱胁迫反应[J].植物学报, 2011, 46(6):606-616. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXT201106003.htm [2] 刘生传, 陈亮.茶树耐旱机理及抗旱节水研究进展[J].茶叶科学, 2014, 34(2):111-121. http://www.cnki.com.cn/Article/CJFDTOTAL-CYKK201402002.htm [3] SHARMA P, KUMAR S.Differential display-mediated identification of three drought-responsive expressed sequence tags in tea[Camellia sinensis (L.) O.Kuntze][J].Journal of Biosciences, 2005, 30(2): 231-235. doi: 10.1007/BF02703703 [4] FAROOQ M, HUSSAIN M, WAHID A, et al.Drought Stress in Plants:An Overview[M].Springer Berlin Heidelberg:Plant Responses to Drought Stress, 2012:1-33. [5] 江昌俊.茶树育种学[M].北京:中国农业出版社, 2011:47. [6] 姜颖, 曹言勇, 路运才, 等.拟南芥中RING型E3泛素连接酶基因AtGW2的克隆和功能分析[J].植物遗传资源学报, 2011, 12(3):448-454. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYC201103021.htm [7] KO J H, YANG S H, HAN K H.Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis[J].The Plant Journal, 2006, 47(3):343-355. doi: 10.1111/tpj.2006.47.issue-3 [8] ZHANG Y Y, YANG C W, LI Y, et al.SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis[J].The Plant Cell, 2007, 19(6):1912-1929. doi: 10.1105/tpc.106.048488 [9] GAO T, WU W R, ZHANG Y Y, et al.OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice[J].Plant Molecular Biology, 2011, 76(1):145-156. http://cn.bing.com/academic/profile?id=2069040344&encoded=0&v=paper_preview&mkt=zh-cn [10] LIU H Z, ZHANG H J, YANG Y Y, et al.Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses[J].Plant Molecular Biology, 2008, 68(1):17-30. http://cn.bing.com/academic/profile?id=1990436466&encoded=0&v=paper_preview&mkt=zh-cn [11] HONG J K, CHOI H W, HWANG I S, et al.Role of a novel pathogen-induced pepper C3-H-C4 type RING-finger protein gene, CaRFPI, in disease susceptibility and osmotic stress tolerance[J].Plant Mol ecular Biology, 2007, 63(4):571-588. doi: 10.1007/s11103-006-9110-2 [12] 郭春芳, 孙云, 唐玉海, 等.水分胁迫对茶树叶片叶绿素荧光特性的影响[J].中国生态农业学报, 2009, (3):560-564. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200903032.htm [13] 赵姗姗, 郭玉琼, 潘一斌, 等.铁观音茶树叶片总RNA提取方法研究[J].龙岩学院学报, 2015, (2):78-81. http://www.cnki.com.cn/Article/CJFDTOTAL-LYSX201502016.htm [14] 林玉玲.龙眼体胚发生过程中SOD基因家族的克隆及表达调控的研究[D].福州:福建农林大学, 2011. http://cdmd.cnki.com.cn/article/cdmd-10389-1011164800.htm [15] LIVAK K J, SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J].Methods, 2001, 25(4):402-408. doi: 10.1006/meth.2001.1262 [16] ZHANG S, QI Y, LIU M, Yang C, et al.SUMO E3 ligase AtMMS21 regulates drought tolerance in Arabidopsis thaliana[J].Integr Plant Biol, 2013, 55:83-95. doi: 10.1111/jipb.2013.55.issue-1 [17] SERINO G, XIE Q.The ever expanding role of ubiquitin and SUMO in plant biology[J].Integr Plant Biol, 2013, 55:5-6. doi: 10.1111/jipb.2013.55.issue-1 [18] 杨东叶, 刘凯于, 余泽华.泛素连接酶E3[J].细胞生物学杂志, 2005, 27(3):281-285. http://mall.cnki.net/magazine/article/xbzz200503010.htm [19] GUO L, NEZAMES C D, SHENG L, et al.Cullin-RING ubiquitin ligase family in plant abiotic stress pathways[J].Integr Plant Biol, 2013, 55: 21-30. doi: 10.1111/jipb.2013.55.issue-1 [20] YANG L, LIU Q, LIU Z, et al.Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling[J].Journal of Integrative Plant Biology, 2016, 58(1): 67-80. doi: 10.1111/jipb.12364 [21] 范锡麟, 杜强, 杨珍珍, 等.水稻泛素连接酶基因OsRING6的克隆及表达分析[J].植物遗传资源学报, 2016, 17(2): 337-343. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYC201602019.htm [22] 郝格格, 孙忠富, 张录强, 等.脱落酸在植物逆境胁迫研究中的进展[J].中国农学通报, 2009, 25(18): 212-215. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200918050.htm [23] 杨洪强, 接玉玲.高等植物脱落酸的生物合成及其调控[J].植物生理学通讯, 2001, 37(5): 457-462. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL200105036.htm [24] PARRY A D.Abscisic acid metabolism[J].Methods in Plant Biochem, 1993, 9:381-402. http://cn.bing.com/academic/profile?id=643771416&encoded=0&v=paper_preview&mkt=zh-cn [25] 曹红利, 岳川, 周艳华, 等.茶树生长素受体基因CsTIR1的克隆与表达分析[J].茶叶科学, 2015, 35(1): 45-54. https://www.researchgate.net/profile/Xinchao_Wang2/publication/280530272_Cloning_and_Expression_Analysis_of_Auxin_Receptor_Gene_CsTIR1_in_Tea_Plant_(Camellia_sinensis)/links/55b8172a08aec0e5f4397cf2.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail [26] 赖瑞联, 林玉玲, 赖钟雄.龙眼生长素受体基因TIR1的克隆及其与miR393互作关系[J].应用与环境生物学报, 2016, 22(1):95-102. http://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201601014.htm [27] MIN, HYE J O, JUNG, et al.CaPUB1, a hot pepper U-box E3 ubiquitin ligase, confers enhanced cold stress tolerance and decreased drought stress tolerance in transgenic rice(Oryza sativaL.)[J].Molecules and cells, 2016, 39(3):250-257. doi: 10.14348/molcells.2016.2290 [28] QI, SHILIAN, LIN, et al. The RING finger E3 ligase SpRING is a positive regulator of salt stress signaling in salt-tolerance wild tomato species[J].Plant & cell physiology, 2016, 57(3):528-539. http://cn.bing.com/academic/profile?id=2277748012&encoded=0&v=paper_preview&mkt=zh-cn [29] 胡婷丽, 李魏, 刘雄伦, 等.泛素化在植物抗病中的作用[J].微生物学通报, 2014, 41(6): 1175-1179. http://www.cnki.com.cn/Article/CJFDTOTAL-WSWT201406022.htm [30] 杨玖霞, 张浩, 王志龙, 等.E3泛素连接酶调控植物抗病分子机理研究进展[J].植物保护, 2015, 41(4):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201504002.htm