Predicting Cold Tolerance of Potato Plants by Electric Conductivity Measurements on Leavesunder Low-temperature Stress
-
摘要: 为评价马铃薯的抗寒能力,以18份马铃薯资源和47份马铃薯后代品系为材料,采用低温胁迫处理马铃薯离体叶片,测定其相应电导率,经Logistic方程拟合得出其半致死温度(LT50)。结果表明,供试材料LT50介于-3.8~-1.0℃,材料间差异显著,随着处理温度的降低,供试材料相对电导率逐渐升高,均呈“S”曲线变化。根据LT50聚类分析结果表明,供试材料分为低温敏感型、中间型、耐寒性较强3类,筛选出耐寒性强的2份资源及4份后代品系可作为耐寒育种材料。Abstract: Eighteen potato cultivars and forty-seven strains were tested for their abilites to tolerate frost and freezing temperatures. Leaves freshly detached from the potato plants were exposed to low temperatures for electric conductivity measurement to derive the medium lethal temperatures, LT50, on each sample. As temperature was lowered, the relative electric conductivity of the potato leaves responded in a typical S function in a logistic equation. The LT50 obtained from the regression equation varied from -3.8℃ to -1℃. They significantly differed among different cultivars and stains. Based on LT50, cold resistances of the various potato cultivars and strains were predicted and clustered into 3 categories, sensitive, medium, and tolerant to freezing. Among them, the two cultivars and 4 strains most tolerant to freezing were preserved for breeding low-temperature resistant varieties in the future.
-
Key words:
- potato /
- relative electric conductivity /
- LT50 /
- cold tolerance
-
表 1 09328145和郑薯6号电解质渗出率平均值
Table 1. Average electrolyte leaching rates of detached leaves fromNo. 09328145 and Zheng-shu No. 6 at low temperatures (n=3)
(单位/%)
处理温度
/℃材料 09137047 郑薯6号 0 31.74 11.34 -1 44.06 23.23 -2 68.08 34.26 -3 75.15 43.59 -4 78.05 57.45 -5 80.29 87.04 -6 84.68 88.25 -7 85.21 90.31 表 2 47份马铃薯后代品系未驯化电导率的Logistic回归方程及半致死温度LT
Table 2. Logistic equation onrelative electric conductivities of leaves from 47 potato strains vs. LT 50
编号 品系 回归方程 相关系数 致死温度
/℃1 0712801 y=188.843/[1+e (1.56-0.25 x)] 0.961 ** -3.2 2 09178056 y=94.007/[1+e (1.650-0.569 x)] 0.975 ** -3.1 3 D540 y=271.379/[1+e (2.489-0.325 x)] 0.984 ** -3.1 4 0719017 y=128.125/[1+e (1.759-0.444 x)] 0.971 ** -3.0 5 D564 y=76.8339/[1+e (1.697-0.808 x)] 0.981 ** -2.9 6 201208012 y=192.029/[1+e (2.450-0.440 x)] 0.959 ** -2.8 7 09424039 y=110.847/[1+e (1.743-0.549 x)] 0.982 ** -2.8 8 09364411 y=158.96/[1+e (1.782-0.350 x)] 0.998 ** -2.7 9 09179006 y=85.914/[1+e (1.624+0.766 x)] 0.937* -2.6 10 2011-47056 y=206.026/[1+e (1.809-0.263 x)] 0.986 ** -2.6 11 0711103 y=258.313/[1+e (2.149-0.286 x)] 0.978 ** -2.5 12 D613 y=89.294/[1+e (2.090-0.942 x)] 0.932* -2.5 13 D597 y=87.280/[1+e (1.667-0.813 x)] 0.881 -2.4 14 201207008 y=89.986/[1+e (1.429-0.693 x)] 0.976 ** -2.4 15 2011-47001 y=94.986/[1+e (1.529-0.639 x)] 0.971 ** -2.4 16 201211002 y=94.986/[1+e (1.529-0.693 x)] 0.971 ** -2.4 17 201221013 y=94.986/[1+e (1.529-0.693 x)] 0.986 ** -2.4 18 201209270 y=129.445/[1+e (1.540-0.462 x)] 0.966 ** -2.3 19 201212024 y=96.236/[1+e (1.529-0.693 x)] 0.971 ** -2.3 20 2011-47027 y=96.980/[1+e (1.236-0.583 x)] 0.977 ** -2.2 21 201207004 y=108.290/[1+e (1.166-0.469 x)] 0.973 ** -2.2 22 D576 y=120.378/[1+e (1101-0.365 x)] 0.956 ** -2.1 23 D549 y=110.533/[1+e (1.000-0.390 x)] 0.979 ** -2.1 24 09319320 y=192.029/[1+e (1.56-0.250 x)] 0.949 ** -2.1 25 17514 y=88.890/[1+e (0.912-0.579 x)] 0.971 ** -2.0 26 17549 y=100.11/[1+e (1.001-0.507 x)] 0.972 ** -2.0 27 2014-4 y=139.213/[1+e (1.457-0.46 x)] 0.981 ** -1.9 28 20121008 y=119.117/[1+e (1.432-0.602 x)] 0.939 ** -1.8 29 201209031 y=94.576/[1+e (0.642-0.414 x)] 0.995 ** -1.8 30 NFJ55 y=106.441/[1+e (1.029-0.516+ x)] 0.971 ** -1.8 31 2011-46087 y=374.338/[1+e (2.391-0.628 x)] 0.981 ** -1.7 32 2014-1 y=86.68/[1+e (0.918-0.730 x)] 0.92* -1.7 33 201205032 y=87.700/[1+e (1.710-1.356 x)] 0.997 ** -1.4 34 2011-47015 y=95.837/[1+e (0.845-0.652 x)] 0.977 ** -1.4 35 201201013 y=96.117/[1+e (0.632-0.502 x)] 0.979 ** -1.4 36 2011-46026 y=91.277/[1+e (1.443-1.172 x)] 0.941* -1.4 37 108-1 y=98.693/[1+e (1.453-1.028 x)] 0.935* -1.4 38 09407078 y=151.77/[1+e (0.979-0.965 x)] 0.971 ** -1.3 39 201207008 y=181.127/[1+e (0.410-0.696 x)] 0.983 ** -1.3 40 D508 y=80.906/[1+e (0.710-0.950 x)] 0.97 ** -1.3 41 20122018 y=104.891/[1+e (1.014-0.762 x)] 0.979 ** -1.2 42 2011-47063 y=90.354/[1+e (0.661-0.725 x)] 0.983 ** -1.2 43 09365417 y=82.66/[1+e (1.098-1.403 x)] 0.986 ** -1.1 44 09173074 y=74.610/[1+e (0.424-1.086 x)] 0.853 -1.0 45 09365324 y=83.057/[1+e 1.324-1.684 x)] 0.994 ** -1.0 46 09328145 y=88.965/[1+e (0.959-1.173 x)] 0.989 ** -1.0 47 09330143 y=90.1215/[1+e (0.831-1.023 x)] 0.993 ** -1.0 表 3 18份马铃薯品种资源未驯化电导率的Logistic回归方程及半致死温度LT
Table 3. Logistic equation on relative electric conductivities of 18 potato cultivarsvs. LT 50
编号 品系 回归方程 相关系数 致死温度 1 郑薯6号 y=100.944/[1+e (3.167-0.835 x)] 0.987 ** -3.8 2 桂农薯1号 y=111.738/[1+e (1.806-0.470)] 0.916 ** -3.4 3 克新1号 y=130.593/[1+e (1.826-0.499 x)] 0.963 ** -2.7 4 中薯6号 y=104.354/[1+e (1.513-0.556 x)] 0.966 ** -2.6 5 KW-59 y=136.143/[1+e (1.673-0.448 x)] 0.983 ** -2.5 6 391585.167 y=147.102/[1+e (1.818-0.475 x)] 0.957 ** -2.4 7 中薯18 y=88.183/[1+e (2.670-1.221 x)] 0.944 ** -2.4 8 KW-36 y=138.203/[1+e (1.696-0.473 x)] 0.925 ** -2.4 9 米拉 y=85.69/[1+e (1.750-0.880 x)] 0.899* -2.4 10 E33 y=289.66/[1+e (2.116-0.232 x)] 0.968 ** -2.4 11 费乌瑞它 y=119.617/[1+e (1.404-0.461 x)] 0.967 ** -2.3 12 中薯19 y=114.467/[1+e (1.490-0.533 x)] 0.959 ** -2.3 13 KW-25 y=100.341/[1+e (1.954-0.863 x)] 0.967 ** -2.3 14 郑薯1号 y=191.9/[1+e (1.834-00.364 x)] 0.998 ** -2.2 15 紫花851 y=108.290/[1+e (1.166-0.469 x)] 0.986 ** -2.1 16 中薯3号 y=95.711/[1+e (1.197-0.611 x)] 0.956 ** -2.1 17 紫云1号 y=98.693/[1+e (0.453-1.028 x)] 0.829 -1.4 18 闽薯1号 y=90.962/[1+e (1.491-1.33 x)] 0.948 ** -1.3 -
[1] 孙慧生.马铃薯育种学[M].北京:中国农业出版社, 2003:45-46. [2] BERESFORD B C. Effect of simulated hail damage on yield and quality of potatoes[J]. American Potato Journal, 1967, 44:347-354. doi: 10.1007/BF02865031 [3] SHIELDS E J, WYMAN J A. Effect of defoliation at specific growth stages on potato yields[J]. Journal of Economic Entomology, 1984, 77:1194-1199. doi: 10.1093/jee/77.5.1194 [4] 门福义, 刘梦芸.马铃薯栽培生理[M].北京:中国农业出版社, 1995. [5] 张永成, 田丰.环境条件对马铃薯生长发育的影响[J].中国马铃薯, 1996, 10(1):32-34. http://www.cnki.com.cn/Article/CJFDTOTAL-MLSZ601.007.htm [6] GHANNAM N A, CROWLEY H. The effect of low temperature blanching on the texture of whole processed new potatoes[J]. Journal of Food Engineering, 2006, 74(3):335-344. doi: 10.1016/j.jfoodeng.2005.03.025 [7] 李飞.野生马铃薯植株苗期耐冻性鉴定及耐冻机理研究[D].北京:中国农业科学院, 2008. [8] 李丽纯, 陈家金, 陈惠, 等.福建省马铃薯气候减产的风险分析和区划[J].中国农业气象, 2013, 34(2):186-190. [9] 马治国, 李文勇. 2011年福建省主要农业气象灾害特征[C].第29届中国气象学会年会. [10] 李岩, 薛凌英, 郑东旗, 等.长乐市马铃薯低温灾害时间分布特征及其预警方法[J].亚热带农业研究, 2014, 10(2):116-119. http://www.cnki.com.cn/Article/CJFDTOTAL-GZZZ201402009.htm [11] 李飞, 金黎平.马铃薯耐霜冻研究进展[J].贵州农业科学, 2007, 35(4):140-142. http://www.cnki.com.cn/Article/CJFDTOTAL-GATE200704057.htm [12] STEFFEN K L, ARORA R. Relative sensitivity of photosynthesis and respiration to freeze-thaw stress in herbaceous species[J].Plant Physiol, 1989, 89:1372-1379. doi: 10.1104/pp.89.4.1372 [13] CHEN Y K H, PALTA J P, BAMBERG J B.Freezing tolerance and tuber production in selfed and backcross progenies derived from somatic hybrids between solanum tuberosum L.and S.commersonii Dun[J].Theoretical Applied Genetics, 1999, 99:100-107. doi: 10.1007/s001220051213 [14] 魏亮.中国主要马铃薯品种抗寒性鉴定及抗寒相关基因表达分析[D].呼和浩特:内蒙古农业大学, 2012. [15] 李飞, 金黎平.野生马铃薯材料耐霜冻性评价[J].中国马铃薯, 2007, 21:139-141. http://www.cnki.com.cn/Article/CJFDTOTAL-MLSZ200703002.htm [16] 刘浩, 张宗山.宁夏南部山区马铃薯主栽品种耐霜冻性研究[J].安徽农业科学, 2008, 36(33):14485-14486. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY200833054.htm [17] 杨超英.马铃薯种质资源的耐冻性鉴定和耐冻机理研究[D].西宁:青海大学, 2011. [18] VEGA S E, BAMBERG J B.Screening the US potato collection for frost hardiness[J].American Potato Journal, 1995, 72:13-21. doi: 10.1007/BF02874375 [19] SUKUMARAN N P. Freezing injury in potato leaves [J]. Plant Physiol, 1972, 50:564-567. doi: 10.1104/pp.50.5.564 [20] 谢军, 耿文娟, 何峰江.以电导法配合Logistic方程测定6种扁桃枝条的抗寒性[J].新疆农业大学学报, 2011, 34(1):32-35. http://www.cnki.com.cn/Article/CJFDTOTAL-XJNY201101007.htm [21] 曹红星, 宋唯一, 孙程旭, 等.应用电导率法及Logistic方程测试椰子幼苗耐寒性研究[J].广西植物, 2009, 29(4):510-513. http://www.cnki.com.cn/Article/CJFDTOTAL-GXZW200904021.htm