Optimization of Chlorella vulgaris Flocculation Using Response Surface Methodology
-
摘要: 以聚合氯化铝(Poly aluminium chloride,PAC)为絮凝剂,利用响应面法对普通小球藻Chlorella vulgaris的絮凝工艺进行优化。研究结果表明:影响C.vulgaris絮凝效率的主次因素顺序为絮凝时间>C.vulgaris初始OD值>PAC浓度;C.vulgaris的最佳絮凝工艺为:PAC浓度为57 mg·L-1,C.vulgaris初始OD值为2.06,絮凝时间为18 min。在此絮凝条件下,C.vulgaris的絮凝效率为95.82%。研究结果将为进一步研究C.vulgaris的絮凝采收工艺提供数据参考和技术支持。Abstract: Flocculation of Chlorella vulgaris using Poly aluminum chloride (PAC) was optimized by theresponse surface methodology. The factors that affected the flocculation efficiency were in the order flocculation duration>initial OD value of C.vulgaris>PAC concentration. The optimized flocculation conditions included a PAC concentration of 57 mg·L-1, an initial OD value of C.vulgaris of 2.06, and flocculation for 18 min to achieve a maximized efficiency of 95.82%.
-
Key words:
- Chlorella vulgaris /
- Poly aluminum chloride /
- flocculation /
- response surface methodology
-
表 1 PAC絮凝C. vulgaris工艺的Box-Behnken试验因素水平设计
Table 1. Factors and levels for Box-Behnken experimental design on PAC flocculation of C. vulgaris
水平 因素 PAC质量浓度/(mg·L-1)(X1) C. vulgaris初始OD值(X2) 絮凝时间/min(X3) -1 50 1.5 10 0 60 2 15 1 70 2.5 20 表 2 PAC絮凝普通小球藻(Chlorella vulgaris)工艺的响应面试验设计方案及结果
Table 2. Design and results of response surface experiment on PAC flocculation of C. vulgaris
试验序号 X1 X2 X3 絮凝效率/% 1 60 2 15 87.28 2 60 2 15 89.13 3 60 2.5 10 79.76 4 50 2 20 89.55 5 60 2 15 91.01 6 70 1.5 15 53.7 7 50 2 10 59.75 8 50 2.5 15 76.29 9 60 1.5 10 61.03 10 50 1.5 15 75.11 11 60 2 15 95.05 12 70 2 10 69.07 13 60 2.5 20 91.94 14 70 2.5 15 89.56 15 60 1.5 20 92.46 16 70 2 20 92.06 17 60 2 15 92.26 表 3 PAC絮凝C. vulgaris工艺条件优化的回归方程的方差分析及其系数显著性检验
Table 3. Variance analysis and significance test on regression equation of response surface experiment for optimizing PAC flocculating C. vulgaris
方差来源 平方和 自由度 均方 F值 P值 显著性 模型 0.27 9 0.03 16.02 0.0007 ** X1 0.0002 1 0.0002 0.11 0.7527 X2 0.039 1 0.039 21.06 0.0025 ** X3 0.12 1 0.12 61.89 0.0001 ** X1X2 0.031 1 0.031 16.45 0.0048 ** X1X3 0.00123 1 0.00123 0.66 0.4439 X2X3 0.00903 1 0.00903 4.85 0.0636 X21 0.044 1 0.044 23.88 0.0018 ** X22 0.019 1 0.019 10.38 0.0146 * X23 0.00324 1 0.00324 1.74 0.2284 残差 0.013 7 0.00186 失拟项 0.00935 3 0.00312 3.39 0.1346 误差项 0.00368 4 0.00092 总和 0.28 16 R2=0.9537 注: * 表示有显著性差异(P<0. 05);** 表示有极显著性差异(P<0. 01)。 -
[1] LEE G E, CORINNE F, LIEVE M L L, et al. Establishment of a bioenergy-focused microalgal culture collection[J]. Algal Research, 2012, 1(2):102-113. doi: 10.1016/j.algal.2012.05.002 [2] MATA T M, MARTINS A A, CAETANO N S, et al. Microalgae for biodiesel production and other applications:a review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1):217-232. doi: 10.1016/j.rser.2009.07.020 [3] GEORGIANNA D R, MAYFIELD S P. Exploiting diversity and synthetic biology for the production of algal biofuels[J]. Nature, 2012, 488(7411):329-335. doi: 10.1038/nature11479 [4] MIAO X L, WU Q Y. Exploitation of biomass renewable energy sources of microalgae[J]. Renewable Energy, 2003, 3(109):13-16. http://cn.bing.com/academic/profile?id=2389001459&encoded=0&v=paper_preview&mkt=zh-cn [5] HARUN R, SINGH M, FORDE G M, et al. Bioprocess engineering of microalgae to produce a variety of consumer products[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3):1037-1047. doi: 10.1016/j.rser.2009.11.004 [6] 刘海琴, 韩士群. 小球藻提取物的生物活性研究[J]. 海洋科学, 2005, 29(9):23-26. http://www.cnki.com.cn/Article/CJFDTOTAL-HYKX200509006.htm [7] 魏文志, 夏文水, 李湘鸣, 等. 小球藻糖蛋白的分离纯化与性质测定[J]. 食品科学, 2006, 27(11):101-104. http://www.cnki.com.cn/Article/CJFDTOTAL-SPKX200611155.htm [8] UDUMAN N, QI Y, DANQUAH M K, et al. Dewatering of microalgal cultures:a major bottleneck to algae-based fuels[J]. Journal of Renewable and Sustainable Energy, 2010, 2(1):389-392. http://cn.bing.com/academic/profile?id=2088292824&encoded=0&v=paper_preview&mkt=zh-cn [9] DASSEY A J, THEEGALA C S. Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications[J]. Bioresource Technology, 2013, 128:241-245. doi: 10.1016/j.biortech.2012.10.061 [10] 丁进锋, 赵凤敏, 曹有福, 等. 聚合氯化铝絮凝小球藻的动力学研究[J]. 农业机械学报, 2015, 46(3):203-207. http://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201503029.htm [11] STANIER R Y, KUNISAWA R, MANDEL M, et al. Purification and properties of unicellular blue-green algae (order Chroococcales)[J]. Bacteriology Reviews, 1971, 35:171-205. [12] 吕旭阳,张雯,杨阳蔡,等.分光光度法测定小球藻数量的方法研究[J].安徽农业科学,2009,37(23):11104-11105. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY200923116.htm [13] 曲孟, 李秀辰, 白晓磊, 等. 用响应面法优化小球藻絮凝沉降工艺的研究[J]. 大连海洋大学学报, 2014, 29(1):61-65. http://www.cnki.com.cn/Article/CJFDTOTAL-DLSC201401014.htm [14] 万春, 张晓月, 赵心清, 等. 利用絮凝进行微藻采收的研究进展[J]. 生物工程学报, 2015, 31(2):161-171. http://www.cnki.com.cn/Article/CJFDTOTAL-SHWU201502002.htm [15] 郭锁莲, 赵心清, 白凤武. 微藻采收方法的研究进展[J]. 微生物学通报, 2015, 42(4):721-728. http://www.cnki.com.cn/Article/CJFDTOTAL-WSWT201504014.htm [16] 薛蓉, 陆向红, 卢美贞, 等. 絮凝法采收小球藻的研究[J]. 可再生能源, 2012, 30(9):80-84. http://www.cnki.com.cn/Article/CJFDTOTAL-NCNY201209022.htm [17] 邓祥元, 成婕, 刘孟姣, 等. 响应面法优化小球藻叶绿素提取工艺及其稳定性研究[J]. 东北农业大学学报, 2015, 46(7):40-49. http://www.cnki.com.cn/Article/CJFDTOTAL-DBDN201507007.htm