Cloning and Bioinformatics of DFR Gene in Vitis davidii Foёx
-
摘要: 根据葡萄DFR基因CDS序列设计刺葡萄开放阅读框(ORF)特异引物,利用RT-PCR技术克隆获得其DFR基因序列,并通过生物信息学方法分析其生物学特性。结果表明,刺葡萄DFR基因ORF序列全长1 014 bp,编码337个氨基酸,命名为Vitis davidii dihydroflavonol 4-reductase gene(VdDFR),GenBank登录号为KF915803。刺葡萄DFR蛋白预测分子量为37 593.2 Da,理论等电点pI为5.81,是一个跨膜亲水蛋白,无典型信号肽,不属于分泌蛋白,并且亚细胞定位主要位于细胞质中(70%);二级结构以无规则卷曲为主(52.82%),是一种mixed类蛋白;该蛋白有潜在的7个糖基化位点和16个磷酸化位点,具有NAD(P)结合位点,有NAD依赖型的表异构酶/脱氢酶的N端结构域,属于NADB_Rossmann超家族成员。核苷酸序列分析表明,刺葡萄DFR基因与美丽葡萄、山葡萄和酿酒葡萄的同源性为99%,与圆叶葡萄同源性为98%,与显齿蛇葡萄同源性为94%,进化上比较保守,利用DFR基因编码区碱基序列所建立的系统关系树与真实的植物进化基本一致。
-
关键词:
- 刺葡萄 /
- 二氢黄酮醇4-还原酶 /
- DFR基因 /
- 克隆 /
- 生物信息学
Abstract: The specific primers of open reading frame (ORF) of dihydroflavonol(DFR) gene in brier grapes (Vitis davidii Foёx.) were designed according to the CDS template of the gene. DFR gene sequence was cloned using RT-PCR, andsubsequently, the genetic characteristics analyzed by bioinformatics. The 1 014 bp full-length cDNA of DRF's ORF was thus obtained. It encoded 337 amino acids, and was named V. davidii DFR 4-reductase gene (VdDFR) with GenBank accession number of KF915803. The predicted molecular weight of VdDFR protein was 37 593.2 Da,theoretical pI is 5.81. As a transmembrane and a hydrophilic protein, it did not belong to secretory category,had no signal peptide, and was located largely in the cytoplasm (70%). The secondary structure ofthe mixed protein was mostly random coil (52.82%). The amino acids sequence of the gene possibly contained 7 glycosylation sites, 16 phosphorylation sites, one NAD(P) binding site, and one NAD-dependent epimerase/dehydratase(N-terminal) domain, and the gene likely belonged to the NADB_Rossmann superfamily. The nucleotide sequences of DFR from V.davidii,V.bellula,V.amurensis, and V.vinifera were 99% homogenous; those of V.davidii and V.rotundifolia, 98% homogenous; and, those of V.davidii and Ampelopsis grossedentata, 94% homogenous. These results indicated that the DFR gene coding region was evolutionally conservative. And, the phylogenetic tree constructed based on the sequence salso reflected the same evolutionary trait of these plants.-
Key words:
- brier grape (Vitisdavidii Foёx.) /
- dihydroflavonol 4-reductase /
- DFR gene /
- cloning /
- bioinformatics
-
表 1 所用的在线分析工具
Table 1. Online analytical tools used in this study
软件 来源或网址 说明 ProtParam http://web.expasy.org/protparam/ 蛋白的理化性质分析 GOR IV http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.plpage=npsa_gor4.html 预测蛋白的二级结构 PredictProtein https://www.predictprotein.org/ 预测蛋白的二级结构 Phyre2 http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgiid=indexuk/phyre2/html/page.cgiid=indexuk/phyre2/html/page.cgiid=indexuk/phyre2/html/page.cg 预测蛋白的三级结构 PSORT II http://psort.hgc.jp/form.html 蛋白的亚细胞定位 TargetP 1.1 http://www.cbs.dtu.dk/services/TargetP/ 预测蛋白的信号肽 TMpred http://www.ch.embnet.org/software/TMPRED_form.html 蛋白序列的跨膜区分析 InterPro http://www.ebi.ac.uk/interpro/scan.html 分析预测蛋白保守结构域 Standard Protein BLAST http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp & PAGE_TYPE=BlastSearch & LINK_LOC=blasthome 分析预测蛋白保守结构域 NetOGlyc 4.0 http://www.cbs.dtu.dk/services/NetOGlyc/ 分析蛋白氨基酸序列潜在的糖基化位点 NetPhos2.0 http://www.cbs.dtu.dk/services/NetPhos/ 预测蛋白氨基酸序列存在的磷酸化位点 -
[1] 金燕, 石雪晖, 熊兴耀, 等. 刺葡萄种质资源的研究与利用现状[J]. 中外葡萄与葡萄酒, 2008,(4):60-62, 69. http://www.cnki.com.cn/Article/CJFDTOTAL-PTZP200804021.htm [2] 孔庆山. 中国葡萄志[M]. 北京:中国农业科学技术出版社, 2004:27-53. [3] AZUMA A, YAKUSHIJI H, KOSHITA Y, et al. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions[J]. Planta, 2012, 236:1067-1080. doi: 10.1007/s00425-012-1650-x [4] FUJITA A, SOMA N, GOTO-YAMAMOTO N, et al. Effect of shading on proanthocyanidin biosynthesis in the grape berry[J]. J Japan Soc Hort Sci, 2007, 76(2):112-119. doi: 10.2503/jjshs.76.112 [5] WINKEL-SHIRLEY B. Flavonoid biosynthesis. a colorful model for genetics, biochemistry, cell biology, and biotechnology[J]. Plant Physiology, 2001, 126(2):485-493. doi: 10.1104/pp.126.2.485 [6] PROVENZANO S, SPELT C, HOSOKAWA S, et al. Genetic control and evolution of anthocyanin methylation[J]. Plant Physiology, 2014, 165(3):962-977. doi: 10.1104/pp.113.234526 [7] HE F, MU L, YAN G L, et al. Biosynthesis of anthocyanins and their regulation in colored grapes[J]. Molecules, 2010, 15(12):9057-9091. doi: 10.3390/molecules15129057 [8] SPARVOLI F, MARTIN C, SCIENZA A, et al. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.)[J]. Plant Molecular Biology, 1994, 24:743-755. doi: 10.1007/BF00029856 [9] KIFUMI AZUMA, SHOZO KOBAYASHI, NOBUHITO MITANI, et al. Genomic and genetic analysis of Myb-related genes that regulate anthocyanin biosynthesis in grape berry skin[J]. Theor. Appl. Genet., 2008, 117:1009-1019. doi: 10.1007/s00122-008-0840-1 [10] KOBAYASHI S. Regulation of anthocyanin biosynthesis in grapes[J]. J Japan Soc Hort Sci, 2009, 78(4):387-393. doi: 10.2503/jjshs1.78.387 [11] CHENG H, LI L L, CHENG S Y, et al. Molecular cloning and characterization of three genes encoding dihydroflavonol-4-reductase from ginkgo biloba in anthocyanin biosynthetic pathway[J]. PLoS ONE, 2013, 8(8):e72017. doi: 10.1371/journal.pone.0072017 [12] JOHNSON E T, RYU S, YI H, et al. Alteration of a single amino acid changes the substrate speci city of dihydro-avonol 4-reductase[J]. The Plant Journal, 2001, 25(3):325-333. doi: 10.1046/j.1365-313x.2001.00962.x [13] 赖呈纯, 范丽华, 黄贤贵, 等. 刺葡萄幼胚愈伤组织诱导及其高产原花青素细胞系筛选[J]. 植物生理学报, 2014, 50(11):1683-1691. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201411011.htm [14] TAMURA K, STECHER G, PETERSON D, et al. MEGA6:Molecular Evolutionary Genetics Analysis Version 6.0[J]. Molecular Biology and Evolution, 2013, 30:2725-2729. doi: 10.1093/molbev/mst197 [15] ROST B, SANDER C. Combining evolutionary information and neural networks to predict protein secondary structure[J]. Protein Sciences, 1994, 19(1):105-132. http://cn.bing.com/academic/profile?id=2013136212&encoded=0&v=paper_preview&mkt=zh-cn [16] 张宁, 胡宗利, 陈绪清, 等. 植物花青素代谢途径分析及调控模型建立[J]. 中国生物工程杂志, 2008, 28(1):97-105. http://www.cnki.com.cn/Article/CJFDTOTAL-SWGJ200801019.htm [17] 李宗艳, 李名扬. 调控植物类黄酮生物合成的转录因子研究进展[J]. 南京林业大学学报:自然科学版, 2011, 35(5):129-134. http://www.cnki.com.cn/Article/CJFDTOTAL-NJLY201105030.htm [18] MOYANO E, PORTERO-ROBLES I, MEDINA-ESCOBAR N, et al. A fruit-specific putative dihydroflavonol 4-reductase gene is differentially expressed in strawberry during the ripening process[J]. Plant Physiology, 1998, 117:711-716. doi: 10.1104/pp.117.2.711 [19] KIM S H, LEE J R, HONG S T, et al. Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin[J]. Plant Science, 2003, 165:403-413. doi: 10.1016/S0168-9452(03)00201-2 [20] HUANG Y, GOU J, JIA Z, et al. Molecular cloning and characterization of two genes encoding dihydroflavonol-4-reductase from Populus trichocarpa[J]. PloS one, 2012, 7(2):e30364. doi: 10.1371/journal.pone.0030364 [21] BRUGLIERA F, BARRI-REWELL G, HOLTON T A, et al. Isolation and characterization of a flavonoid 3'-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida[J]. Plant Journal, 1999, 19(4):441-451. doi: 10.1046/j.1365-313X.1999.00539.x [22] JOHNSON E T, YI H, SHIN B, et al. Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins[J]. Plant Journal, 1999, 19(1):81-85. doi: 10.1046/j.1365-313X.1999.00502.x