Prediction Algorithm on Secretory Proteins of Bacillus subtilis XF-1
-
摘要: 枯草芽孢杆菌XF-1对诸多植物病原菌具有抑制作用, 是农业生产上重要的生防菌之一。利用SignalP、ProtComp、TMHMM、Phobius、LipoP、TatP等预测程序对枯草芽孢杆菌中3 853条蛋白质序列进行分泌蛋白的预测研究, 并对所获得的分泌蛋白开展氨基酸分布、信号肽长度、切割位点等性质进行分析。结果表明, 该菌含有分泌蛋白为104个, 其氨基酸长度、信号肽长度与植物病原菌不同;信号肽切割位点属于A-X-A类型, 与其他已经报道的植物病原真菌、细菌以及卵菌中分泌蛋白信号肽切割位点一致。通过上述生物信息学分析方法有效地实现了枯草芽孢杆菌分泌蛋白的预测, 分泌蛋白的信号肽切割位点具有物种保守型特点。Abstract: Bacillus subtilis XF-1 inhibits the growth of many plant pathogens, and therefore, is an important agricultural biocontrol agent. The gene sequence of 3 853 proteins was analyzed to identify the segments responsible for the generation of proteins secreted by the bacterium. The prediction algorithm base on the genetic information applied SignalP, ProtComp, TMHMM, Phobius, LipoP and TatP. The distribution of amino acids, length of signal peptide, and cleavage site of the 104 secretory proteins found in XF-1 were determined. The lengths of amino acid sequence and signal peptide of XF-1 differed from those of the pathogens. But, its cleavage site of the signal peptide belonged to the same AXA type as those of the pathogenic fungi, bacteria and oomycete found on plants. The bioinformatics analyses carried out in this study successfully forecasted the secretory proteins from B. subtilis. And, the identical type of cleavage site of signal peptide between SF-1 and other microorganisms suggested that the site was genetically conservative.
-
Key words:
- Bacillus subtilis /
- secretory protein /
- signal peptide /
- prediction algorithm
-
[1] 刘庆丰, 熊国如, 毛自朝, 等. 枯草芽胞杆菌XF-1的根围定殖能力分析[J]. 植物保护学报,2012, 39(5):425-430. [2] 李兴玉, 毛自朝, 吴毅歆, 等. 不同培养基对Bacillus subtilis XF-1产脂肽抗生素的影响[J]. 内蒙古农业大学学报:自然科学版,2014, (6):49-53. [3] 周晓罡, 侯思名, 陈铎文, 等. 马铃薯晚疫病菌全基因组分泌蛋白的初步分析[J]. 遗传,2011, 33(7):125-133. [4] JUNCKER A S, WILLENBROCK H, VON HEIJNE G, et al. Prediction of lipoprotein signal peptides in Gram-negative bacteria[J]. Protein Science,2003, 12(8):1652-1662. [5] BENDTSEN J D, NIELSEN H, WIDDICK D, et al. Prediction of twin-arginine signal peptides[J]. BMC bioinformatics,2005, 6(1):167.
点击查看大图
计量
- 文章访问数: 1329
- HTML全文浏览量: 65
- PDF下载量: 397
- 被引次数: 0