Optimization on Ultrasonic Disruption for Extracting Intracellular Metabolites of Brevibacillus brevis FJAT-0809-GLX Using Response Surface Methodology
-
摘要: 为提取短短芽胞杆菌FJAT-0809-GLX的胞内代谢物质,利用超声波破碎其细胞,对胞内代谢物质进行优化提取。在超声波输出功率、超声时间以及料液比进行单因素试验的基础上,利用Design-expert进行试验设计,响应面优化得到胞内代谢物质的最佳提取工艺。单因素试验结果表明,当超声时间为30min时,获得的胞内代谢物质较多,胞内代谢物质得率为11mg·g-1;超声波功率为100 W时,所得胞内代谢物质得率最高,为9.33mg·g-1;料液比1∶25时所得胞内代谢物质得率最高,为12.22mg·g-1。进一步通过响应面优化发现,超声时间、超声功率、料液比3个因素对胞内代谢物质得率的影响程度依次为:料液比>超声破碎时间>超声功率。最佳超声波提取方法为:超声功率为318.68 W,超声时间为10min,料液比为1∶25,在此条件下提取的胞内代谢物质得率为12.987 8mg·g-1。Abstract: Ultrasound was applied to rupture the cells of Brevibacilllus brevis FJAT-0809-GLX to facilitate extraction of the intracellular metabolites produced by the bacteria.Effect of ultrasonic power,treatment time,and cell/liquid ratio were studied in a single-factor experiment.Optimum conditions of the extraction were determined using a design-expert program and the response surface method.The single-factor experiment showed that,when the ultrasonic treatment time was 30 min,the greatest recovery rate on the intracellular metabolites,i.e.,11mg·g-1,could be obtained;when 100 W of ultrasound power was applied,the highest extraction rate of9.33mg·g-1 was achieved;and,when a cell/liquid ratio was 1∶25implemented,the highest yield of 12.22mg·g-1 could be reached.Then,the process was optimization by using the response surface method to show that the effects were cell/liquid ratio>ultrasonic application time>ultrasonic power,and the optimal conditions for the ultrasonic disruption were:an application of ultrasonic power at 318.68 W,a total treatment time of 10 min,and a cell/liquid ratio of 1∶25.As a result,ayield of the intracellular metabolites from the extraction at 12.987 8mg·g-1 was achieved.
-
[1] COOK R J.Making greater use of introduced microorganisms for biological control of plant pathogens[J].Annual Review of Phytopathology,1993,31:53-80. [2] COOK R J,BRUCKART W L,COULSON J R,et al.Safety of microorganisms intended for pest and plant disease control:aframeworkfor scientific evaluation[J].Biological Control,1996,(7):333-351. [3] TAKAGI H,MIYAUCHI A,KADOWAKI K,et al.Potential use of Bacillus brevis HPD31for the production of foreign proteins[J].Agricultural and Biological Chemistry,1989,53:2279-2280. [4] YAMAGATA H,NAKAHAMA K,SUZUKI Y,et al.Use of Bacillus brevisfor efficient synthesis and secretion of human epidermal growth factor[J].Proceedings of the National Academy of Sciences USA,1989,86:3589-3593. [5] 郭万奎,侯兆伟,石梅,等.短短芽孢杆菌和蜡状芽孢杆菌采油机理及其在大庆特低渗透油藏的应用[J].石油勘探与开发,2007,34(1):73-78. [6] CHE J M,LIU B,RUAN C Q,et al.Biocontrol of Lasiodiplodiatheobromae,which causes black spot disease of harvested wax apple fruit,using a strain of Brevibacillusbrevis FJAT-0809-GLX[J].Crop Protection,2015,67:178-183. [7] 郝晓娟,刘波,谢关林,等.短短芽孢杆菌JK-2菌株对番茄枯萎病的抑菌作用及其小区防效[J].中国生物防治,2007,23(3):233-236. [8] 陈莉,缪卫国,刘海洋,等.短短芽孢杆菌A57对棉花主要病原真菌的拮抗机理[J].西北农业学报,2008,17(4):149-155. [9] 易有金,尹华群,罗宽.烟草内生短短芽孢杆菌的分离鉴定及对烟草青枯病的防效[J].植物病理学报,2007,37(3):301-306. [10] THEOBALD U,MAILINGER W,BALTES M,et al.In vivo analysis of metabolic dynamic in Saccharomyces cerevisiae:I.Experimental observation[J].Biotechnol Bioeng,1997,55:305-316. [11] GLASSBROOK N,RYALS J.A systematic approach to biochemical prowling[J].Curr Opin Plant Biol,2001,(4):186-190. [12] KADERBHAI NN,BROADHURST DI,ELLIS DI,et al.Functional Genomics via Metabolic Footprinting:Monitoring Metabolite Secretion by Escherichia Coli Tryptophan Metabolism Mutants Using FT-IR and Direct Injection Electrospray Mass Spectrometry[J].Comp Funct Genom,2003,(4):376-391. [13] FIEHN.Metabolomics-the link between genotypes and phenotypes[J].Plant Mol Biol,2002,48:155-171. [14] STITT M,FERNIE A R.From measurements of metabolites to metabolomics:an‘on the fly’perspective illustrated by recent studies of carbon-nitrogen interactions[J].Curr Opin Biotechnol,2003,14:136-144. [15] DALLUGE J J,SMITH S,SACHEZ-RIERA F,et al.Potential of fermentation profiling via rapid measurement of amino acid metabolism by liquid chromatography-tandem mass spectrometry[J].J Chromatogr A,2004,1043:3-7. [16] VILLAS-BOAS S G,MOXLEY J F,KESSSON M,et al.High-throughput metabolic state analysis:the missing link in integrated functional genomics of yeasts[J].Biochem J,2005,388:669-677. [17] 曾敏,谢为天,潘丽媚,等.鼠李糖乳杆菌细胞破碎方法的比较及其肽聚糖含量的测定[J].饲料工业,2010,31(8):31-33. [18] 黄占旺,上官新晨,沈勇根,等.鲤鱼精蛋白的提取与抗菌稳定性研究[J].农业工程学报,2005,21(2):165-168. [19] 吴蕾,雷鸣,洪建辉,等.超声破碎重组大肠杆菌释放包含体的过程研究[J].化学工业与工程,2002,19(6):422-425. [20] 江学斌,陈颖恒,冯燕平,等.蜡样芽孢杆菌的破碎条件及对SOD活性的影响[J].广东化工,2010,37(5):78-79,122. [21] 郭宇星,潘道东.超声波破碎法提取瑞士乳杆菌氨肽酶条件的优化[J].食品科学,2008,29(8):140-144. [22] 赵永芳.生物化学技术原理及其应用[M].武汉:武汉大学出版社,1994. [23] FELIU J X,CUBARSI R,VILLAVERDE A.Optimized secretion of recombinant proteins by uhrasonication of E.coli cells[J].Biotechnol Bioeng,1998,58:536-540. [24] OZBEK B,TILGEN K O.The stability of enzymes after sonication[J].Process Biochem,2000,35:1037-1043. [25] 邓洁,程龙,刘谊,等.根肿(Plasmodiophorabrassicae)休眠孢子的纯化和超声波破碎方法研究[J].应用与环境生物学报,2006,12(2):269-272. [26] 赵瑞香,王大红,牛生洋,等.超声波细胞破碎法检测嗜酸乳杆菌β-半乳糖苷酶活力的研究[J].食品科学,2006,27(1):47-50. [27] 石荣莲,汪立平,刘玉佩.重组褐藻胶裂解酶基因工程菌超声波破碎条件研究[J].湖南农业科学,2010,(21):98-101,104. [28] 李聚海,岳田利,袁亚宏.辅酶Q10超声波破碎法提取工艺条件研究[J].西北农林科技大学学报,2007,35(5):207-211. [29] 徐慧,贾士儒,刘建军.响应面法优化枯草芽孢杆菌3-羟基丁酮发培养基[J].中国酿造,2011,(8):133-137. [30] 张宇光,姜鹭,任发政,等.响应面法优化短杆菌素的发酵[J].农产品加工学刊,2011,(9):8-12. [31] 王海平,黄和升,郭雷.响应面法优化樱桃果酒发酵[J].中国酿造,2011,(9):75-79. [32] 吴克刚,杨连生,黄通旺.超声波破碎Thraustochytrium提取脂质的研究[J].郑州工程学院学报,2001,22(4):31-34. [33] GAETE-GARRETN L,VARGAS-HERNNDEZ Y,CARES-PACHECO MG,et al.Ultrasonically enhanced extraction of bioactive principles from Quillaja Saponaria Molina[J].Ultrasonics,2011,51(5):581-585. [34] 张荆,童群义.超声波破碎提取D-甘露糖异构酶条件的研究[J].食品工业科技,2009,30(10):247-249. [35] 李芳亮,王锐,孙磊,等.响应面法优化超声波提取沙棘叶水溶性多糖工艺研究[J].广东农业科学,2011,(12):101-104. [36] 于帅,杜彬,杨越冬,等.用响应面法优化微波辅助提取板栗仁中多酚物质[J].经济林研究,2011,29(3):8-16. [37] 张强,迟建国,邱维忠,等.醋酸钙不动杆菌PAHs降解酶的超声波提取优化[J].中国农学通报,2014,30(17):180-185.
点击查看大图
计量
- 文章访问数: 182
- HTML全文浏览量: 51
- PDF下载量: 2
- 被引次数: 0