Promoter-cloning,Protein Subcellular Localization,and Expression Analysis for AmaDOPA5-GT Gene of Amaranth tricolor
-
摘要: 对获得的苋菜环多巴5-糖基转移酶基因(AmaDOPA5-GT)进行生物信息学和蛋白亚细胞定位分析,并利用染色体步移技术克隆该基因的启动子。亚细胞定位结果表明,AmaDOPA5-GT定位于细胞膜。启动子分析结果表明AmaDOPA5-GT启动子中植物光响应元件多达8个,说明光对该基因的表达影响较大。色素含量测定及实时定量PCR结果显示:暗处理抑制苋菜苷合成和AmaDOPA5-GT表达;黄光和绿光抑制苋菜苷合成但对AmaDOPA5-GT表达影响不大;红光显著抑制苋菜苷合成但却显著诱导AmaDOPA5-GT表达;蓝光显著促进苋菜苷合成和AmaDOPA5-GT表达。本研究可为揭示AmaDOPA5-GT基因在苋菜苷的作用奠定基础并为富含甜菜红色素苋菜苷的苋菜育种提供线索。Abstract: Bioinformatic characteristics and protein subcellular localization of AmaDOPA5-GT gene in Amaranth tricolor were studied.The chromosome walking technique was applied to clone the gene promoter.The protein was found to be located in the cytomembrane.Eight light-responsive elements were identified in the promoter,suggesting that light might be associated with the regulation of the gene expression.The amaranthin content and quantitative real time PCR showed that darkness suppressed both betalain biosynthesis and AmaDOPA5-GT gene expression;red light also suppressed betalain biosynthesis,but significantly enhanced the gene expression;yellow and green light showed no effect on the gene expression,but suppressed the betalain biosynthesis;and,blue light induced both betalain biosynthesis and the gene expression.The results obtained provided a basis for further exploring the function of AmaDOPA5-GT in betalain biosynthesis,as well as a guideline for breeding betalain-rich amarnath.
-
Key words:
- amaranth /
- DOPA5-GT /
- promoter /
- light /
- betalain biosynthesis
-
[1] PEDERSEN B,KALINOWSKI L S,EGGUM B O.The nutritive value of amaranth grain(Amaranthus caudatus)[J].Plant Food Hum Nutr,1987,36(4):309-324. [2] RASTOGI A,SHUKLA S.Amaranth:A new millennium crop of nutraceutical values[J].Crit Rev Food Sci,2013,53(2):109-125. [3] ACHIGAN-DAKO E G,SOGBOHOSSOU O E D,MAUNDU P.Current knowledge on Amaranthus spp.:research avenues for improved nutritional value and yield in leafy amaranths in sub-Saharan Africa[J].Euphytica,2014,197(3):303-317. [4] SOGBOHOSSOU O E D,ACHIGAN-DAKO E G.Phenetic differentiation and use-type delimitation in Amaranthus spp.from worldwide origins[J].Sci Hortic-Amsterdam,2014,178:31-42. [5] CAI Y Z,SUN M,CORKE H.Characterization and application of betalain pigments from plants of the Amaranthaceae[J].Trends Food Sci Tech,2005,16(9):370-376. [6] STRACK D,VOGT T,SCHLIEMANN W.Recent advances in betalain research[J].Phytochemistry,2003,62(3):247-269. [7] GAND A-HERRERO F,GARC A-CARMONA F.Biosynthesis of betalains:yellow and violet plant pigments[J].Trends Plant Sci,2013,18(6):334-343. [8] SAKUTA M.Diversity in plant red pigments:anthocyanins and betacyanins[J].Plant Biotechnol Rep,2014,8(1):37-48. [9] WYLER H,MEUER U,BAUER J,et al.Cyclodopaglucoside(=(2S)-5-(β-D-glocopyranosyloxy)-6-hydroxyindoline-2-carboxylic acid)and its occurrence in red beet(beta vulgaris var.rubra L.)[J].Helv Chim Acta,1984,67(5):1348-1355. [10] KOBAYASHI N,SCHMIDT J,WRAY V,et al.Formation and occurrence of dopamine-derived betacyanins[J].Phytochemistry,2001,56(5):429-436. [11] SASAKI N,ADACHI T,KODA T,et al.Detection of UDP glucose:cyclo-DOPA 5-O-glucosyltransferase activity in four o'clocks(Mirabilis jalapa L.)[J].Febs Lett,2004,568(1):159-162. [12] SASAKI N,ABE Y,WADA K,et al.Amaranthin in feather cockscombs is synthesized via glucuronylation at the cycloDOPA glucoside step in the betacyanin biosynthetic pathway[J].J Plant Res,2005,118(6):439-442. [13] CASIQUE-ARROYO G,MART NEZ-GALLARDO N,DE LA VARA L G,et al.Betacyanin biosynthetic genes and enzymes are differentially induced by(a)biotic stress in Amaranthus hypochondriacus[J].Plos One,2014,9(6):e99012. [14] SASAKI N,WADA K,KODA T,et al.Isolation and characterization of cDNAs encoding an enzyme with glucosyltransferase activity for cyclo-DOPA fromfour o'clocks and feather cockscombs[J].Plant Cell Physiol,2005,46(4):666-670. [15] ZHAO S Z,SUN H Z,CHEN M,et al.Light-regulated betacyanin accumulation in euhalophyte Suaeda salsa calli[J].Plant Cell Tiss Org,2010,102(1):99-107. [16] SHIN K S,MURTHY H N,HEO J W,et al.Induction of betalain pigmentation in hairy roots of red beet under different radiation sources[J].Biol Plantarum,2003,47(1):149-152. [17] G RING H,D RFLER M.Amaranthin accumulation in continuous red and blue light by seedlings of Amaranthus caudatus L[J].Biol Plantarum,1981,23(3):193-197. [18] LIU S,KUANG H,LAI Z.Transcriptome Analysis by Illumina High-Throughout Paired-End Sequencing Reveals the Complexity of Differential Gene Expression during In Vitro Plantlet Growth and Flowering in Amaranthus tricolor L[J].Plos One,2014,9:e100919. [19] 刘生财,匡华琴,谢礼洋,等.苋菜试管苗amaNACA2-like基因克隆及生物信息学分析[J].东北农业大学学报,2014,45(1):83-89. [20] 林丽霞,屈莹,徐洋,等.龙眼体胚发生过程生长素响应因子DlARF5a的克隆及表达分析[J].西北植物学报,2014,34(6):1075-1082. [21] VOGT T,GRIMM R,STRACK D.Cloning and expression of a cDNA encoding betanidin 5-O-glucosyltransferase,a betanidin-and flavonoid-specific enzyme with high homology to inducible glucosyltransferases from the Solanaceae[J].Plant J,1999,19(5):509-519. [22] GACHON C M M,LANGLOIS-MEURINNE M,SAINDRENAN P.Plant secondary metabolism glycosyltransferases:the emerging functional analysis[J].Trends Plant Sci,2005,10(11):542-549. [23] KISHIMA Y,SHIMAYA A,ADACHI T.Evidence that blue light induces betalain pigmentation in Portulaca callus[J].Plant Cell Tiss Org,1995,43(1):67-70. [24] KHLER K H,DRFLER M,GRING H.The influence of light on the cytokinin content of Amaranthus seedlings[J].Biol Plantarum,1980,22(2):128-134.
点击查看大图
计量
- 文章访问数: 219
- HTML全文浏览量: 50
- PDF下载量: 6
- 被引次数: 0