Identification of Protein Content in Corn Based on Partial Least Squares Regression
-
摘要: 以10 0004 000cm-1波段的近红外光谱响应数据和常规生化方法检测的玉米蛋白质含量为样本数据, 先对光谱响应数据进行小波去噪处理, 并利用平滑技术对其降维, 构建基于以光谱响应数据为输入、蛋白质含量为输出的偏最小二乘回归模型。仿真计算结果表明, 利用偏最小二乘回归模型, 可以较准确地预测玉米蛋白质含量, 结合预测表达式回归系数和变量投影重要性指标VIP得到与蛋白质含量相关性较大的若干波段对应的光谱响应数据, 模型在一定程度上揭示了蛋白质含量和光谱响应数据之间的数量关系。Abstract: Applying the partial least squares regression methodology, the protein contents of corn measured by using near infrared at 10 000-4 000cm-1 wave band and the conventional biochemical method were compared.The near infrared spectra were firstly de-noised and smoothed for dimensionality reduction, and then, the data was used as the input and protein content as the output for the model establishment.The simulation results showed that the protein content of corn could be accurately predicted by the regression model.The predictive expression regression coefficients and the variable importance in projection obtained on the spectra at a certain wavelengths highly correlated with the protein content.The model appeared to provide a significant quantitative relationship between the biochemical and near infrared determinations on the protein content of corn.
-
[1] 宗莉, 薛娴, 王涛, 等.近红外光谱分析技术在水果内部品质无损检测中的应用[J].安徽农业科学, 2010.38 (6) :2765-2767.[2]孙岩峰, 黄玉东, 王超.主成分分析用于近红外光谱定量测定高硅氧/酚醛预浸料树脂含量及挥发份含量研究[J].航空材料学报, 2003, 3 (23) :53-54.[3]罗一帆, 郭振飞, 朱振宇, 等.近红外光谱测定茶叶中茶多酚和茶糖多的人工神经网络模型研究[J].光谱学与光谱分析, 2005, 8 (25) :1230-1233.[4]何勇, 李晓丽, 邵咏妮.基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究[J].光谱学与光谱分析, 2006, 5 (26) :850-853.[5]吴伟, 蔡培升.基于MATLAB的小波去噪仿真[J].信息与电子工程, 2008, (6) :220-229.[6]GELADIP, KOWALSKIBR.Partial least-squares regression:a tutorial[J].Analytica Chimic Acta, 1986, 185 (1) :1-17.[7]汪洋.PLS回归应用实例[J].安徽大学学报, 2001, (9) :19-22.[8]刘国海, 程锦翔, 丁煜函, 等.青霉素发酵过程中基于PLSVIP的神经网络逆软测量方法[J].计算机与应用化学, 2013, (11) :1294-1298.
点击查看大图
计量
- 文章访问数: 149
- HTML全文浏览量: 37
- PDF下载量: 2
- 被引次数: 0