Advances in Genetic Modification of Panicum virgatum
-
摘要: 柳枝稷Panicum virgatum被认为是一种具有巨大发展潜力的生物质能源作物, 逐渐成为能源植物研究较为理想的模式植物, 应用基因工程对柳枝稷进行基因改良, 选育出适宜作为能源植物开发的品种是提高柳枝稷功能的重要技术手段。本文从改变植物形态、增加生物量, 降低木质素含量、提高糖化效率以及提高生物胁迫耐受性等3个方面分析柳枝稷相关的基因功能研究, 阐述可利用的相应基因工程手段, 以期为更好地培育、开发能源植物柳枝稷新品种提供参考。Abstract: An energy crop with a tremendous potential, Switchgrass (Panicum virgatum) , has been gradually used as a model plant for the related research.Recently, genetic methods were applied to select the genotypes with high biomass, low lignin, high ethanol conversion rate and resistance in order to improve its applications in the are a of biological energy.The present paper attempted to provide relevant references for the future development on the breeding of switchgrass.The functional genes that might be applicable for the enhancement of the biomass production, the saccharification efficiency, and/or the resistance to stresses, as well as related genetic methods are included.
-
Key words:
- energy plant /
- switchgrass /
- genetic engineering /
- gene modification
-
[1] MCGINNIS R L, ELIMELECH M.Global Challenges in Energy and Water Supply:The Promise of Engineered Osmosis[J].Environ Sci Technol, 2008, 42:8625-8629. [2] DORIAN J P, Franssen H T, Simbeck D R.Global challenges in energy[J].Energ Policy, 2006, 34:1984-1991. [3] 傅登祺, 黄宏文.能源植物资源及其开发利用简况[J].武汉植物学研究, 2006, (2) :183-190. [4] RAGAUSKAS A J, WILLIAMS C K, DAVISON BH, et al.The path forward for biofuels and biomaterials[J].Science, 2006, 311:484-489. [5] SANDERSON M A, REED R L, MCLAUGHLIN S B, et al.Switchgrass as a sustainable bioenergy crop[J].Bioresource Technol, 1996, 56:83-93. [6] FU C X, MIELENZ J R, XIAO X R, et al.Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass[J].Proc Natl Acad Sci USA, 2011, 108 (9) :3803-3808. [7] JAKOB K, ZHOU F S, PATERSON A.Genetic improvement of C4grasses as cellulosic biofuel feedstocks[J].In Vitro Cell Dev Biol-Plant, 2009, 45:291-305. [8] OSSOWSKI S, SCHWAB R, WEIGEL D.Gene silencing in plants using artificial microRNAs and other small RNAs[J].Plant J, 2008, 53 (4) :674-690. [9] BONNET E, WUYTS J, ROUZE P, et al.Detection of 91potential in plant conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes[J].Proc Natl Acad Sci USA, 2004, 101 (31) :11511-11516. [10] ZHANG Y, SCHWARZ S, SAEDLER H, et al.SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis[J].Plant Mol Biol, 2007, 63 (3) :429-439. [11] FU CX, SUNKAR R, ZHOU CE, et al.Overexpression of miR156in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production[J].Plant Biotechnol J, 2012, 10 (4) :443-452. [12] 翁海波, 韩绍印, 高建民, 等.植物基因工程改善生物质能利用的研究进展[J].生物技术通报, 2007, (4) :19-21. [13] KOCOLOSKI M, GRIFFIN W M, MATTHEWS H S.Impacts of facility size and location decisions on ethanol production cost[J].Energ Policy, 2011, 39 (1) :47-56. [14] 薛英喜, 魏建华, 姜延波, 等.植物次生生长相关MYB转录因子研究进展[J].安徽农业科学, 2012, (13) :7650-7655. [15] SHEN H, POOVAIAH C R, ZIEBELL A, et al.Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production[J].Biotechnol Biofuels, 2013, (6) :71. [16] SHEN H, HE X Z, POOVAIAH C R, et al.Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4for improvement of lignocellulosic feedstocks[J].New Phytol, 2012, 193 (1) :121-136. [17] GUO DJ, CHEN F, INOUE K, et al.Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-Omethyltransferase in transgenic alfalfa:Impacts on lignin structure and implications for the biosynthesis of G and S lignin[J].Plant Cell, 2001, 13 (1) :73-88. [18] O'MALLEY D M, WHETTEN R, BAO W L, et al.The role of laccase in lignification[J].Plant J, 1993, 4 (5) :751-757. [19] TOBIAS C, CHOW E.Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification[J].Planta, 2005, 220 (5) :678-688. [20] FU C, XIAO X, XI Y, et al.Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass[J].Bioenerg Res, 2011, 4 (3) :153-164. [21] SAATHOFF A J, REED R L, MCLAUGHLIN S B, et al.Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment[J].PloS One, 2011, 6 (1) , doi: 10.1371. [22] DOWD P, JOHNSON E.Differential resistance of switchgrass Panicum virgatum L.lines to fall armyworms Spodoptera frugiperda (J.E.Smith) [J].Genet Resour Crop Ev, 2009, 56 (8) :1077-1089. [23] DOWD P F, SARATH G, MITCHELL R B, et al.Insect resistance of a full sib family of tetraploid switchgrass Panicumvirgatum L.with varying lignin levels[J].Genet Resour Crop Ev, 2013, 60 (3) :975-984. [24] NABITY P D, ZANGERL A R, BERENBAUM M R, et al.Bioenergy crops miscanthus X giganteus and Panicum virgatum reduce growth and survivorship of Spodoptera frugiperda (Lepidoptera:Noctuidae) [J].J Econ Entomol, 2011, 104 (2) :459-464. [25] DOWD P F, BERHOW M A, JOHNSON E T.Differential activity of multiple saponins against omnivorous insects with varying feeding preferences[J].J Chem Ecol, 2011, 37 (5) :443-449. [26] WANG J W, CZECH B, WEIGEL D.miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J].Cell, 2009, 138 (4) :738-749. [27] OSAKABE Y, YAMAGUCHI S K, SHINOZAKI K, et al.ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity[J].New Phytol, 2013, 202 (1) :1-15.
点击查看大图
计量
- 文章访问数: 151
- HTML全文浏览量: 44
- PDF下载量: 2
- 被引次数: 0