• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于豆渣为氮源的红法夫酵母产虾青素的发酵条件优化

官雪芳 陈舒莹 赖恭梯 王琦 赖呈纯 黄菊青 郑琪 林斌

官雪芳,陈舒莹,赖恭梯,等. 基于豆渣为氮源的红法夫酵母产虾青素的发酵条件优化 [J]. 福建农业学报,2024,39(9):1−9
引用本文: 官雪芳,陈舒莹,赖恭梯,等. 基于豆渣为氮源的红法夫酵母产虾青素的发酵条件优化 [J]. 福建农业学报,2024,39(9):1−9
GUAN X F, CHEN S Y, LAI G T, et al. Optimization of Astaxanthin-producing Fermentation by Phaffia rhodozyma using Okara as Nitrogen Source [J]. Fujian Journal of Agricultural Sciences,2024,39(9):1−9
Citation: GUAN X F, CHEN S Y, LAI G T, et al. Optimization of Astaxanthin-producing Fermentation by Phaffia rhodozyma using Okara as Nitrogen Source [J]. Fujian Journal of Agricultural Sciences,2024,39(9):1−9

基于豆渣为氮源的红法夫酵母产虾青素的发酵条件优化

基金项目: 福建省科技计划公益类专项(2022R1032006)
详细信息
    作者简介:

    官雪芳(1979 —),女,副研究员,主要从事微生物发酵工艺及代谢产物研究,E-mail:guan-619@163.com

    通讯作者:

    林斌(1964 —),男,副研究员,主要从事废弃物利用及功能食品,E-mail:linbin591@126.com

  • 中图分类号: TQ46

Optimization of Astaxanthin-producing Fermentation by Phaffia rhodozyma using Okara as Nitrogen Source

  • 摘要:   目的  研究以豆渣为氮源进行红法夫酵母产虾青素的可行性,并进行发酵工艺优化,为替代传统的红法夫酵母生产虾青素过程中通常使用的蛋白胨和酵母粉等高成本氮源、降低虾青素生产成本提供参考。  方法  以豆渣为有机氮源,分析碳源、前体物质、其他氮源、维生素和无机盐等对虾青素产量的影响,选取(NH4)2SO4、维生素E、葡萄糖、蔗糖4个影响因子进行发酵工艺的响应面优化。  结果  以湿豆渣为氮源时,葡萄糖是红法夫酵母产虾青素的最佳碳源,葡萄糖与蔗糖复合可促进虾青素增产,KCl、KNO3、K2HPO4等钾盐物质,(NH4)2SO4、VB2、VE、玉米黄素等均可显著促进虾青素的产量。对增产最优的4个因素(葡萄糖、蔗糖、K2SO4 和维生素E)进行响应面优化,获得产虾青素的最佳培养基配方为:湿豆渣 10%、K2SO4 0.22%、维生素E 0.6%、葡萄糖 1.08%、蔗糖1.50%,虾青素产量实测值为32.46 mg·L−1,是YM培养基产量的2.23倍。  结论  豆渣可作为唯一氮源进行红法夫酵母发酵产虾青素,经响应面试验进行工艺优化,红法夫酵母生产虾青素效率明显提升。研究可为虾青素生产中氮源成本控制及虾青素产量提升提供参考。
  • 图  1  红法夫酵母生长及虾青素积累基础培养条件分析

    A:YM、C、Glc、Suc、Fru和Tre分别代表YM培养基、未加糖豆渣培养基、2.5%葡萄糖、2.5%蔗糖、2.5%果糖、2.5%海藻糖。不同字母代表样品间显著差异(P≤0.01),下同。

    Figure  1.  Required ingredients for P. rhodozyma growth and astaxanthin production

    A: YM, C, Glc, Suc, Fru, and Tre represent YM medium, unsugar-added okara medium, 2.0% glucose, 2.0% sucrose, 2.0% fructose, and 2.0% trehalose treatment, respectively. Data with different letters represent significant differences between samples at p≤0.01. Same for below.

    图  2  不同因子对红法夫酵母生物量及产虾青素含量的影响。

    A:向对照组(CK组)中分别加入0.5%的蛋白胨、牛肉粉和酵母粉;B:Glc、Suc、Fru和Tre分别代表葡萄糖、蔗糖、果糖和海藻糖,+表示2种糖的等量混合物;C中,E:乙醇,Ace:乙酸,Lac:乳酸, Sul:磺基水杨酸,Ze:玉米黄素,Tom:番茄。D中,VA:维生素A,VB1:维生素B1,VB2:维生素B2,VC:维生素C, VE:维生素E。

    Figure  2.  Viable count and astaxanthin yield of P. rhodozyma under various treatments

    A: 0.5% peptone, beef powder, and yeast powder added to CK; B: Glc, Suc, Fru, and Tre represent glucose, sucrose, fructose, and trehalose, respectively; "+" denotes an equal mixture of two sugars; C: in CK, 0.5% ethanol (E), acetic acid (Ace), lactic acid (Lac), sulfosalicylic acid (Sul), zeaxanthin (Ze), and tomato (Tom) were added; D: 0.5% vitamin A (VA), vitamin B1 (VB1), vitamin B2 (VB2), vitamin C (VC), and vitamin E (VE) were added.

    图  3  不同影响因子加入量对红法夫酵母生物量及虾青素产量的影响。

    Figure  3.  P. rhodozyma biomass and astaxanthin production in fermentation with additions of varied amounts of 4 key ingredients

    图  3  不同影响因子加入量对红法夫酵母生物量及虾青素产量的影响。

    Figure  3.  P. rhodozyma biomass and astaxanthin production in fermentation with additions of varied amounts of 4 key ingredients

    表  1  响应面优化设计因素及水平编码表

    Table  1.   Factors and codes applied in response surface experiment

    促进因子
    Promoter factor
    编码
    Code
    水平 level
    −1 0 1
    硫酸钾 K2SO4/% A 0.2 0.4 0.6
    维生素E Vitamin E/% B 0.6 0.8 1.0
    葡萄糖 Glucose/% C 1.00 1.25 1.50
    蔗糖 Sucrose/% D 1.00 1.25 1.50
    下载: 导出CSV

    表  2  响应面优化试验结果

    Table  2.   Response surface optimization results

    试验号
    No.
    影响因子加入量
    Dosage of influence factors/%
    虾青素含量
    Content of
    Astaxanthin/
    (mg·L−1)
    试验号
    No.
    影响因子加入量
    Dosage of influence factors/%
    虾青素含量
    Content of
    Astaxanthin/
    (mg·L−1)
    K2SO4 维生素E
    Vitamins E
    葡萄糖
    Glucose
    蔗糖
    Sucrose
    K2SO4 维生素E
    Vitamins E
    葡萄糖
    Glucose
    蔗糖
    Sucrose
    1 0.4 0.6 1.5 1.25 24.14±0.94 16 0.4 0.6 1.25 1 20.92±1.68
    2 0.4 0.8 1.25 1.25 29.13±0.32 17 0.6 0.8 1.25 1.5 20.90±1.58
    3 0.4 0.6 1 1.25 27.38±0.48 18 0.4 0.8 1 1 20.14±1.03
    4 0.2 1 1.25 1.25 22.27±0.94 19 0.2 0.8 1.25 1 19.28±2.90
    5 0.6 0.6 1.25 1.25 20.42±0.77 20 0.2 0.6 1.25 1.25 24.02±0.06
    6 0.4 0.8 1.5 1.5 22.43±1.16 21 0.4 1 1.5 1.25 23.27±0.68
    7 0.4 0.8 1.25 1.25 27.19±0.23 22 0.6 0.8 1 1.25 26.60±0.94
    8 0.4 0.8 1.5 1 25.51±1.26 23 0.2 0.8 1 1.25 24.25±2.00
    9 0.4 1 1.25 1.5 20.83±0.19 24 0.4 0.8 1.25 1.25 28.63±0.19
    10 0.4 0.8 1 1.5 26.65±0.10 25 0.6 0.8 1.5 1.25 21.42±0.39
    11 0.4 0.6 1.25 1.5 28.01±0.35 26 0.4 0.8 1.25 1.25 27.60±1.65
    12 0.6 1 1.25 1.25 28.13±1.48 27 0.6 0.8 1.25 1 24.55±1.32
    13 0.4 1 1.25 1 26.94±0.45 28 0.2 0.8 1.25 1.5 27.99±1.23
    14 0.2 0.8 1.5 1.25 24.57±0.32 29 0.4 1 1 1.25 25.51±1.06
    15 0.4 0.8 1.25 1.25 28.27±2.26
    下载: 导出CSV

    表  3  回归模型的方差分析

    Table  3.   ANOVA of quadratic model

    方差来源
    Source
    平方和
    Sum of
    Squares
    自由

    df
    均方差
    Mean
    Square
    F
    F value
    P
    P value
    显著性
    Significance
    模型
    Model
    228.71 14 16.34 9.02 0.0001 **
    A-K2SO4 0.011 1 0.011 6.13×10−3 0.9387
    B-VE 0.35 1 0.35 1.90×10−1 0.6664
    C-葡萄糖
    C-Glucose
    7.04 1 7.04 3.89 0.0687
    D-蔗糖
    D-Sucrose
    7.47 1 7.47 4.12 0.0617
    AB 22.41 1 22.41 12.37 0.0034 **
    AC 7.56 1 7.56 4.17 0.0604
    AD 38.22 1 38.22 21.1 0.0004 **
    BC 0.25 1 0.25 0.14 0.7148
    BD 43.62 1 43.62 24.08 0.0002 **
    CD 22.95 1 22.95 12.67 0.0031 **
    A2 41.79 1 41.79 23.07 0.0003 **
    B2 16.78 1 16.78 9.26 0.0088
    C2 16.72 1 16.72 9.23 0.0089
    D2 42.83 1 42.83 23.64 0.0003 **
    残差
    Residual
    25.36 14 1.81
    失拟项
    Lack of Fit
    22.94 10 2.29 3.79 0.1055 ns
    纯误差
    Pure error
    2.42 4 0.61
    总离差
    Cor total
    254.07 28
    R2 0.9002
    Radj2 0.8003
    CV/% 5.44
    *表示 P <0. 05, 差异显著;**表示 P <0. 01;差异极显著;ns表示P≥0.05,差异不显著。*: Significant difference at P<0.05; **: extremely significant difference at P<0.01; ns: no significant difference at P≥0.05.
    下载: 导出CSV
  • [1] 王宝贝, 凌雪萍, 郑宗宇, 等. 维生素对红法夫酵母产虾青素的影响 [J]. 厦门大学学报(自然科学版), 2011, 50(1):111−116.

    WANG B B, LING X P, ZHENG Z Y, et al. Effect of vitamins on astaxanthin production of Phaffia rhodozyma [J]. Journal of Xiamen University (Natural Science), 2011, 50(1): 111−116. (in Chinese)
    [2] 周桂雄, 王闻, 谭雪松, 等. 利用农业废弃物碳源的红法夫酵母生产虾青素研究进展 [J]. 农业工程学报, 2016, 32(15):308−314. doi: 10.11975/j.issn.1002-6819.2016.15.043

    ZHOU G X, WANG W, TAN X S, et al. Review on astaxanthin production from agricultural wastes by Phaffia rhodozyma [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(15): 308−314. (in Chinese) doi: 10.11975/j.issn.1002-6819.2016.15.043
    [3] LAI J X, LIU W P, BU J, et al. Enhancement of astaxanthin production from food waste by Phaffia rhodozyma screened by flow cytometry and feed application potential [J]. Biotechnology and Applied Biochemistry, 2023, 70(6): 1817−1829. doi: 10.1002/bab.2484
    [4] 张辰, 徐慧, 朱坤福, 等. 微生物法生产虾青素的研究进展 [J]. 中国酿造, 2021, 40(10):29−35. doi: 10.11882/j.issn.0254-5071.2021.10.005

    ZHANG C, XU H, ZHU K F, et al. Research progress in the production of astaxanthin by microbial method [J]. China Brewing, 2021, 40(10): 29−35. (in Chinese) doi: 10.11882/j.issn.0254-5071.2021.10.005
    [5] HIGUERA-CIAPARA I, FÉLIX-VALENZUELA L, GOYCOOLEA F M. Astaxanthin: A review of its chemistry and applications [J]. Critical Reviews in Food Science and Nutrition, 2006, 46(2): 185−196. doi: 10.1080/10408690590957188
    [6] ELBAHNASWY S, ELSHOPAKEY G E. Recent progress in practical applications of a potential carotenoid astaxanthin in aquaculture industry: A review [J]. Fish Physiology and Biochemistry, 2024, 50(1): 97−126. doi: 10.1007/s10695-022-01167-0
    [7] NAIR A, AHIRWAR A, SINGH S, et al. Astaxanthin as a king of ketocarotenoids: Structure, synthesis, accumulation, bioavailability and antioxidant properties [J]. Marine Drugs, 2023, 21(3): 176. doi: 10.3390/md21030176
    [8] 林嘉祺, 庄岩, 刘骁, 等. 一株海洋红法夫酵母Phaffia rhodozyma RP-306产虾青素的发酵条件优化 [J]. 海洋科学, 2024, 48(2):69−78.

    LIN J Q, ZHUANG Y, LIU X, et al. Optimization of fermentation conditions for astaxanthin production by marine Phaffia rhodozyma RP-306 [J]. Marine Sciences, 2024, 48(2): 69−78. (in Chinese)
    [9] 潘雪珊, 凌雪萍, 叶驰名, 等. 红发夫酵母生产虾青素的氮源补加策略 [J]. 厦门大学学报(自然科学版), 2013, 52(4):545−552.

    PAN X S, LING X P, YE C M, et al. Nitrogen feeding strategies on astaxanthin production by Xanthophyllomyces dendrorhous [J]. Journal of Xiamen University (Natural Science), 2013, 52(4): 545−552. (in Chinese)
    [10] 安君. 红法夫酵母发酵钝顶螺旋藻合成虾青素及载虾青素微粒功能性质研究[D]. 北京: 北京林业大学, 2020.

    AN J. Study on synthesis of astaxanthin from Spirulina platensis by Phaffia rhodozyma and functional properties of astaxanthin-loaded particles[D]. Beijing: Beijing Forestry University, 2020. (in Chinese)
    [11] 江文涛, 彭立影, 马加军, 等. 产虾青素红法夫酵母的发酵工艺优化 [J]. 饲料博览, 2021(12):13−18. doi: 10.3969/j.issn.1001-0084.2021.12.003

    JIANG W T, PENG L Y, MA J J, et al. Optimization of fermentation process of astaxanthin producing Phaffia rhodozyma [J]. Feed Review, 2021(12): 13−18. (in Chinese) doi: 10.3969/j.issn.1001-0084.2021.12.003
    [12] 张晶. 红法夫酵母菌株筛选及TiO2胁迫提高其虾青素产量的作用机制[D]. 长春: 吉林农业大学, 2022.

    ZHANG J. Screening of Phaffia rhodozyma strain and the mechanism of Increasing Its astaxanthin production under TiO2 stress[D]. Changchun: Jilin Agricultural University, 2022. (in Chinese)
    [13] 祝义伟, 龙勃, 龙勇, 等. 豆渣中营养成分的检测及其含量声称 [J]. 食品研究与开发, 2017, 38(8):117−120. doi: 10.3969/j.issn.1005-6521.2017.08.027

    ZHU Y W, LONG B, LONG Y, et al. Determination and content claim of nutrients in okara [J]. Food Research and Development, 2017, 38(8): 117−120. (in Chinese) doi: 10.3969/j.issn.1005-6521.2017.08.027
    [14] 韩扬, 何聪芬, 董银卯, 等. 响应面法优化超声波辅助酶法制备燕麦ACE抑制肽的工艺研究 [J]. 食品科学, 2009, 30(22):44−49. doi: 10.3321/j.issn:1002-6630.2009.22.006

    HAN Y, HE C F, DONG Y M, et al. Response surface optimization of ultrasonic-assisted enzymatic preparation of ACE inhibitory peptides from oat [J]. Food Science, 2009, 30(22): 44−49. (in Chinese) doi: 10.3321/j.issn:1002-6630.2009.22.006
    [15] 倪辉, 何国庆, 杨远帆, 等. 法夫酵母虾青素提取工艺的优化研究 [J]. 农业工程学报, 2004, 20(2):204−208. doi: 10.3321/j.issn:1002-6819.2004.02.049

    NI H, HE G Q, YANG Y F, et al. Optimization of condition for extracting astaxanthin from Phaffia rhodozyma [J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(2): 204−208. (in Chinese) doi: 10.3321/j.issn:1002-6819.2004.02.049
    [16] STOKLOSA R J, JOHNSTON D B, NGHIEM N P. Phaffia rhodozyma cultivation on structural and non-structural sugars from sweet Sorghum for astaxanthin generation [J]. Process Biochemistry, 2019, 83: 9−17. doi: 10.1016/j.procbio.2019.04.005
    [17] MIAO L L, CHI S, WU M R, et al. Deregulation of phytoene-β-carotene synthase results in derepression of astaxanthin synthesis at high glucose concentration in Phaffia rhodozyma astaxanthin-overproducing strain MK19 [J]. BMC Microbiology, 2019, 19(1): 133. doi: 10.1186/s12866-019-1507-6
    [18] 王严飞, 刘燕青, 陶正国, 等. 玉米黄素转化为虾青素的工艺参数研究 [J]. 天然产物研究与开发, 2014, 26(2):278−282.

    WANG Y F, LIU Y Q, TAO Z G, et al. Study on technical parameters of converting Zeaxanthin into astaxanthin [J]. Natural Product Research and Development, 2014, 26(2): 278−282. (in Chinese)
    [19] 刘春利, 沈宁燕, 倪辉, 等. 乙醇对法夫酵母发酵合成虾青素的影响 [J]. 食品与发酵工业, 2018, 44(3):1−7.

    LIU C L, SHEN N Y, NI H, et al. Effect of ethanol on synthesis of astaxanthin by Phaffia rhodozyma [J]. Food and Fermentation Industries, 2018, 44(3): 1−7. (in Chinese)
    [20] YAMANE Y, HIGASHIDA K, NAKASHIMADA Y, et al. Astaxanthin production by Phaffia rhodozyma enhanced in fed-batch culture with glucose and ethanol feeding [J]. Biotechnology Letters, 1997, 19(11): 1109−1111. doi: 10.1023/A:1018492611011
    [21] 黎丽, 窦光鹏, 霍文严, 等. 高产虾青素红法夫酵母的选育和工艺优化 [J]. 中国食品添加剂, 2014, 25(9):140−146. doi: 10.3969/j.issn.1006-2513.2014.09.014

    LI L, DOU G P, HUO W Y, et al. Screening and optimization of a high-yield astaxanthin-producing Phaffia rhodozyma [J]. China Food Additives, 2014, 25(9): 140−146. (in Chinese) doi: 10.3969/j.issn.1006-2513.2014.09.014
    [22] 王雪, 孙美娟, 刘军贤, 等. 激光镊子拉曼光谱法优化红法夫酵母合成虾青素条件 [J]. 光散射学报, 2013, 25(2):152−157. doi: 10.3969/j.issn.1004-5929.2013.02.009

    WANG X, SUN M J, LIU J X, et al. Condition optimization of astaxanthin production in Phaffia rhodozyma using laser tweezers Raman spectroscopy [J]. The Journal of Light Scattering, 2013, 25(2): 152−157. (in Chinese) doi: 10.3969/j.issn.1004-5929.2013.02.009
    [23] 徐建春, 孙翰, 张睿钦, 等. 响应面分析法优化雨生红球藻产虾青素培养基 [J]. 中国酿造, 2014, 33(12):72−75. doi: 10.11882/j.issn.0254-5071.2014.12.014

    XU J C, SUN H, ZHANG R Q, et al. Optimization of Haematococcus Pluvialis medium producing astaxanthin by response surface methodology [J]. China Brewing, 2014, 33(12): 72−75. (in Chinese) doi: 10.11882/j.issn.0254-5071.2014.12.014
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  26
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-11
  • 修回日期:  2024-09-02
  • 网络出版日期:  2024-10-24

目录

    /

    返回文章
    返回