• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用HYSPLIT模型分析茶园假眼小绿叶蝉迁飞扩散行为

高冬梅 皇甫佳一 郭萧

高冬梅,皇甫佳一,郭萧. 利用HYSPLIT模型分析茶园假眼小绿叶蝉迁飞扩散行为 [J]. 福建农业学报,2024,39(5):1−7
引用本文: 高冬梅,皇甫佳一,郭萧. 利用HYSPLIT模型分析茶园假眼小绿叶蝉迁飞扩散行为 [J]. 福建农业学报,2024,39(5):1−7
GAO D M, HUANGFU J Y, . Using HYSPLIT model to analyze the migration and dispersion of Empoasca vitis (Göthe) in tea garden [J]. Fujian Journal of Agricultural Sciences,2024,39(5):1−7
Citation: GAO D M, HUANGFU J Y, . Using HYSPLIT model to analyze the migration and dispersion of Empoasca vitis (Göthe) in tea garden [J]. Fujian Journal of Agricultural Sciences,2024,39(5):1−7

利用HYSPLIT模型分析茶园假眼小绿叶蝉迁飞扩散行为

基金项目: 重庆市市级财政科研项目(cqaas2023sjczqn024、cqaas2023sjczzd001);重庆市科研机构绩效激励引导专项(cstc2021jxjl80022、cqaas2022jxjl007);重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX1197)
详细信息
    作者简介:

    高冬梅(1981 — ),女,硕士,助理研究员,主要从事农业害虫天敌的景观调控研究,E-mail:283532286@qq.com

    通讯作者:

    郭萧(1980 —),男,博士,副研究员,主要从事农业昆虫与害虫防治研究,E-mail:qiyeshu2000@qq.com

  • 中图分类号: S435

Using HYSPLIT model to analyze the migration and dispersion of Empoasca vitis (Göthe) in tea garden

  • 摘要:   目的  明确假眼小绿叶蝉[Empoasca vitis (Gothe)]迁飞扩散行为特征,初步揭示影响其种群迁飞扩散的关键因素。  方法  利用系留气球悬挂诱虫黄板诱捕不同朝向、不同高度假眼小绿叶蝉,通过HYSPLIT-4气流动力模型和气象数据,分析模拟假眼小绿叶蝉迁飞扩散行为。通过田间虫口调查,结合种群密度与扩散系数分析,明确推动假眼小绿叶蝉种群分布转化的驱动因素。  结果  假眼小绿叶蝉最高飞行高度为8 m,2~8 m高度内,随高度增加,假眼小绿叶蝉数量逐步下降。HYSPLIT-4气流动力模型分析结果表明,假眼小绿叶蝉迁飞轨迹只与迁飞时间有关,高度对其迁飞轨迹与直线扩散距离没有影响。此外,HYSPLIT-4气流动力模型分析结果还表明,假眼小绿叶蝉24 h直线迁飞距离为35.70~178.10 km。种群密度与扩散系数分析表明,假眼小绿叶蝉有聚集分布和随机分布两种分布型,迁飞和扩散是导致两种分布型转化的重要因素。  结论  借助气流,假眼小绿叶蝉可以实现区域性的迁飞。在种群密度驱动下,假眼小绿叶蝉种群分布存在聚集分布和随机分布的转化,也促使假眼小绿叶蝉种群发生田间扩散和区域性迁飞。因此,假眼小绿叶蝉的防控应以主要防治区为中心,向外扩展200 km 的范围内开展统防统治。
  • 图  1  不同高度黄板诱集的叶蝉数量

    A:相同高度不同方向上黄板所粘假眼小绿叶蝉数量百分比比较;B:同一方向,不同高度黄板所粘假眼小绿叶蝉数量百分比比较;图中数据为平均值±标准误,经Duncan’s新复极差检验(One-way ANOVA,P>0.05),A图中同一高度数据具有相同字母者表示差异不显著;B图中同一朝向数据具有相同字母者表示差异不显著。

    Figure  1.  Number of E. vitis trapped at different heights

    A: Comparison of the number of E. vitis on the sticky card traps at the same height and at different orientations in percentage terms; B: Comparison of the number of E. vitis on the sticky card traps at the same orientation and at different height in percentage terms. The data in the graphs are mean ± standard error, as tested by Duncan's new replicated extreme variance test (One-way ANOVA, P>0.05), Columns of the same height with the same letter in graph A indicate insignificant differences. Columns of the same orientation with the same letter in graph B indicate insignificant differences.

    图  2  假眼小绿叶蝉不同起飞时间24 h内模拟迁飞路线

    红色、蓝色、绿色轨迹分别对应8、4、2 m的起飞高度。

    Figure  2.  Forward trajectories of E. vitis duration 24 h at different take-off time

    图  3  假眼小绿叶蝉虫口密度与扩散系数

    Figure  3.  Population density and diffusion coefficient of E. vitis

    表  1  试验地气象数据

    Table  1.   Meteorological data of experimental sites

    日期
    Date
    最高气温
    Mmaximum
    temperature / ℃
    最低气温
    Minimum
    temperature / ℃
    日平均气温
    Average daily
    temperature /℃
    天气
    Weather
    风级与风向
    Beaufort scale
    and direction
    日平均风速
    Average daily wind
    speed/ (m·s−1)
    06-10 27.0 18.0 24.2 西南风2级 2.5
    06-11 25.0 19.0 22.1 东北风2级 1.9
    06-12 25.0 19.0 22.3 东风2级 2.8
    06-13 25.0 20.0 22.6 东南风4级 6.2
    06-14 29.0 23.0 24.5 小雨 东北风2级 3.2
    使用当日2:00、8:00、14:00、20:00的温度值、风速值计算日平均气温和日平均风速。日最低气温和日最高气温由仪器自动记录。风向以当日持续时间最长的风向为当日风向。
    The daily average air temperature and daily average wind speed are calculated using the temperature values and wind speed values at 2:00, 8:00, 14:00 and 20:00 of the day. The daily minimum temperature and daily maximum temperature are recorded automatically by the instrument. Wind direction is taken as the wind direction with the longest duration of the day.
    下载: 导出CSV

    表  2  不同起飞时间假眼小绿叶蝉模拟迁飞着落点及直线距离

    Table  2.   The simulated landed location and migrate straight-line distance of E. vitis at different take-off time

    日期
    Date
    迁飞起算时间
    Take-off time
    历时
    Flight time/h
    高度
    Height/m
    着落经度
    Longitude of the landing site
    着落纬度
    Latitude of the landing site
    着落点位置
    Landing site
    直线迁飞距离
    Straight-line migration distance/km
    06-11 5:00 24 2 106.5467o E 29.2040 o N 重庆市巴南区 35.27
    4 106.5467o E 29.2040 o N 重庆市巴南区 35.27
    6 106.5467o E 29.2040 o N 重庆市巴南区 35.27
    8 106.5467o E 29.2040 o N 重庆市巴南区 35.27
    06-12 5:00 24 2 106.2560o E 29.5961 o N 重庆市璧山区 48.78
    4 106.2419 o E 29.6080 o N 重庆市璧山区 50.47
    6 106.2289 o E 29.6200 o N 重庆市璧山区 52.07
    8 106.2150 o E 29.6340 o N 重庆市璧山区 53.84
    06-13 5:00 24 2 105.2911 o E 28.7945 o N 四川省泸州市 159.57
    4 105.2909 o E 28.7947 o N 四川省泸州市 159.58
    6 105.2212 o E 28.7953 o N 四川省泸州市 165.54
    8 105.0697 o E 28.8094 o N 四川省泸州市 178.10
    06-14 5:00 24 2 105.7789 o E 29.3321 o N 重庆市永川区 94.36
    4 105.7789 o E 29.3321 o N 重庆市永川区 94.36
    6 105.7789 o E 29.3321 o N 重庆市永川区 94.36
    8 105.7789 o E 29.3321 o N 重庆市永川区 94.36
    根据HYSPLIT模拟轨迹,利用Google earth 6.0 (Google Inc.,NASDAQ:GOOG)测得着落点经纬度及直线迁飞距离。Latitude, longitude and linear distance of the landing site were measured from the HYSPLIT simulated trajectory using Google Earth 6.0 (Google Inc., NASDAQ: GOOG).
    下载: 导出CSV

    表  3  假眼小绿叶蝉种群扩散系数

    Table  3.   Coefficient of E. vitis Population

    日期
    Date
    扩散系数C
    Coefficient
    扩散系数95%置信区间
    Diffusion coefficient 95%
    confidence interval
    2019/4/2 0.8962* 1±0.6089
    2019/4/17 0.5643* 1±0.9462
    2019/5/2 0.4421* 1±0.5839
    2019/5/19 0.4807 1±0.4281
    2019/6/2 0.3318 1±0.2087
    2019/6/17 0.6290 1±0.2036
    2019/7/2 0.8289 1±0.1328
    2019/7/17 0.7715 1±0.1758
    2019/8/2 0.4571 1±0.2010
    2019/8/17 0.2460 1±0.2502
    2019/9/1 0.3253 1±0.2808
    2019/9/16 0.5267 1±0.3652
    2019/10/2 0.5976 1±0.3243
    2019/10/16 0.6324* 1±0.6077
    *代表扩散系数C值在95%置信区间内。
    * denotes diffusion coefficient C within 95% confidence intervals.
    下载: 导出CSV
  • [1] 熊兴平. 假眼小绿叶蝉防治研究进展 [J]. 茶叶科学技术, 2003, 44(4):1−5.

    XIONG X P. Research progress on control of Empoasca vitis [J]. Technology of Tea Science, 2003, 44(4): 1−5. (in Chinese)
    [2] 王庆森, 王定锋, 吴光远. 我国茶树假眼小绿叶蝉研究进展 [J]. 福建农业学报, 2013, 28(6):615−623. doi: 10.3969/j.issn.1008-0384.2013.06.022

    WANG Q S, WANG D F, WU G Y. Research advances on Empoasca vitis(Göthe)in tea trees in China [J]. Fujian Journal of Agricultural Sciences, 2013, 28(6): 615−623. (in Chinese) doi: 10.3969/j.issn.1008-0384.2013.06.022
    [3] 朱俊庆. 茶树害虫[M]. 北京: 中国农业科技出版社, 1999.
    [4] HELDEN V M, DECANT D. The possibilities for conservation biocontrol as a management strategy against Empoasca vitis [J]. IOBC/WPRS Bull., 2001, 24(7): 291−299.
    [5] DECANT D, HELDEN V M. Intra-plot distribution of the green leafhopper Empoasca vitis in a Bordeaux vineyard [J]. IOBC/WPRS Bull., 2003, 26(8): 181−188.
    [6] DECANT, D, HELDEN, V M. Green leafhopper (Empoasca vitis Göthe) migrations and dispersions [J]. IOBC/WPRS Bull., 2003, 26(8): 189−196.
    [7] 边磊, 孙晓玲, 陈宗懋. 假眼小绿叶蝉的日飞行活动性及成虫飞行能力的研究 [J]. 茶叶科学, 2014, 34(3):248−252. doi: 10.3969/j.issn.1000-369X.2014.03.008

    BIAN L, SUN X L, CHEN Z M. Studies on daily flight activity and adult flight capacity of Empoasca vitis Göthe [J]. Journal of Tea Science, 2014, 34(3): 248−252. (in Chinese) doi: 10.3969/j.issn.1000-369X.2014.03.008
    [8] 芦芳, 翟保平, 胡高. 昆虫迁飞研究中的轨迹分析方法 [J]. 应用昆虫学报, 2013, 50(3):853−862. doi: 10.7679/j.issn.2095-1353.2013.119

    LU F, ZHAI B P, HU G. Trajectory analysis methods for insect migration research [J]. Chinese Journal of Applied Entomology, 2013, 50(3): 853−862. (in Chinese) doi: 10.7679/j.issn.2095-1353.2013.119
    [9] STEIN A F, DRAXLER R R, ROLPH G D, et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system [J]. Bulletin of the American Meteorological Society, 2015, 96(12): 2059−2077. doi: 10.1175/BAMS-D-14-00110.1
    [10] OTUKA A, WATANABE T, SUZUKI Y, et al. Real-time prediction system for migration of rice planthoppers Sogatella furcifera (Horváth) And Nilaparvata lugens (Stål) (Homoptera: Delphacidae) [J]. Applied Entomology and Zoology, 2005, 40(2): 221−229. doi: 10.1303/aez.2005.221
    [11] 王凤英, 胡高, 陈晓, 等. 近年来广西南宁稻纵卷叶螟大发生原因分析 [J]. 中国水稻科学, 2009, 23(5):537−545. doi: 10.3969/j.issn.1001-7216.2009.05.14

    WANG F Y, HU G, CHEN X, et al. Analysis on the causes of recent outbreaks of Cnaphalocrocis medinalis in Nanning, China [J]. Chinese Journal of Rice Science, 2009, 23(5): 537−545. (in Chinese) doi: 10.3969/j.issn.1001-7216.2009.05.14
    [12] HU G, LU F, LU M H, et al. The influence of Typhoon Khanun on the return migration of Nilaparvata lugens (Stål) in Eastern China [J]. PLoS One, 2013, 8(2): e57277. doi: 10.1371/journal.pone.0057277
    [13] 郁振兴, 武予清, 蒋月丽, 等. 利用HYSPLIT模型分析麦蚜远距离迁飞前向轨迹 [J]. 生态学报, 2011, 31(3):889−896.

    YU Z X, WU Y Q, JIANG Y L, et al. Forward trajectory analysis of wheat aphids during long-distance migration using HYSPLIT model [J]. Acta Ecologica Sinica, 2011, 31(3): 889−896. (in Chinese)
    [14] TAYLOR L. Assessing and interpreting the spatial distributions of insect populations [J]. Annual Review of Entomology, 1984, 29: 321−357. doi: 10.1146/annurev.en.29.010184.001541
    [15] 高宇, 孙晓玲, 边磊, 等. 假眼小绿叶蝉成虫在茶园中的活动规律研究 [J]. 北方园艺, 2013, (16):134−136.

    GAO Y, SUN X L, BIAN L, et al. Study on activity rhythms of adult Empoasca vitis Göthe in tea plantations [J]. Northern Horticulture, 2013(16): 134−136. (in Chinese)
    [16] 李金玉, 王庆森, 李良德, 等. 茶小绿叶蝉种名变更及其种群发生与生物生态环境关系的研究进展 [J]. 福建农业学报, 2022, 37(1):123−130.

    LI J Y, WANG Q S, LI L D, et al. Research progress on the dominant species identification of tea green leafhopper and the relationship between its population and the biological and ecological environment [J]. Fujian Journal of Agricultural Sciences, 2022, 37(1): 123−130. (in Chinese)
    [17] 翟保平, 张孝羲. 迁飞过程中昆虫的行为: 对风温场的适应与选择 [J]. 生态学报, 1993, 13(4):356−363. doi: 10.3321/j.issn:1000-0933.1993.04.002

    ZHAI B P, ZHANG X X. Behaviour of migrating insects: Adaptation and selection to atmospheric environment [J]. Acta Ecologica Sinica, 1993, 13(4): 356−363. (in Chinese) doi: 10.3321/j.issn:1000-0933.1993.04.002
    [18] FENG H L, GUO X, SUN H Y, et al. Flight muscles degenerate by programmed cell death after migration in the wheat aphid, Sitobion avenae [J]. BMC Research Notes, 2019, 12(1): 672. doi: 10.1186/s13104-019-4708-z
    [19] 周宁宁, 王梦馨, 崔林, 等. 基于COI基因全长序列的假眼小绿叶蝉地理种群遗传分化研究 [J]. 生态学报, 2014, 34(23):6879−6889.

    ZHOU N N, WANG M X, CUI L, et al. Genetic variation of Empoasca vitis(Göthe)(Hemiptera: Cicadellidae) among different geographical populations based on mtDNA COI complete sequence [J]. Acta Ecologica Sinica, 2014, 34(23): 6879−6889. (in Chinese)
    [20] 贝文勇. 茶树小绿叶蝉空间分布型及抽样技术探讨 [J]. 广西植保, 2010, 23(2):5−8. doi: 10.3969/j.issn.1003-8779.2010.02.002

    BEI W Y. Discussion on spatial distribution pattern and sampling technology of tea leafhopper [J]. Guangxi Plant Protection, 2010, 23(2): 5−8. (in Chinese) doi: 10.3969/j.issn.1003-8779.2010.02.002
    [21] 包云轩, 孙梦秋, 严明良, 等. 基于两种轨迹模型的褐飞虱迁飞轨迹比较研究 [J]. 生态学报, 2016, 36(19):6122−6138.

    BAO Y X, SUN M Q, YAN M L, et al. Comparative study of migration trajectories of the brown planthopper, Nilaparvata lugens(Stål), in China based on two trajectory models [J]. Acta Ecologica Sinica, 2016, 36(19): 6122−6138. (in Chinese)
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-06
  • 修回日期:  2024-01-19
  • 网络出版日期:  2024-06-26

目录

    /

    返回文章
    返回