• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合微生物菌剂对毛竹土壤细菌群落结构的影响

袁宗胜

袁宗胜. 复合微生物菌剂对毛竹土壤细菌群落结构的影响 [J]. 福建农业学报,2024,39(X):1−11
引用本文: 袁宗胜. 复合微生物菌剂对毛竹土壤细菌群落结构的影响 [J]. 福建农业学报,2024,39(X):1−11
YUAN Z S. Effects of applied microbial cultures on the soil bacteria community structure of Phyllostachys edulis [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−11
Citation: YUAN Z S. Effects of applied microbial cultures on the soil bacteria community structure of Phyllostachys edulis [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−11

复合微生物菌剂对毛竹土壤细菌群落结构的影响

基金项目: 福建省林业科技研究项目(2021FKJ07)
详细信息
    作者简介:

    袁宗胜(1976 —),男,博士,副教授,主要从事森林资源培育、微生物等方面研究,E-mail:yuanzs369@163.com

  • 中图分类号: Q938

Effects of applied microbial cultures on the soil bacteria community structure of Phyllostachys edulis

  • 摘要:   目的  探究复合微生物菌剂[产气肠杆菌(Enterobacter aerogenes)CT-B09-2、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)JL-B06和乙酸钙不动杆菌(Acinetobacter calcoaceticus)WYS-A01-1]对毛竹土壤细菌群落结构和多样性的影响。  方法  以毛竹(Phyllostachys edulis)实生幼苗为研究对象,采用灌根的方式施用复合微生物菌剂,施用复合微生物菌剂30 d后采集毛竹幼苗根际与非根际土壤样本,测定土壤理化性质,提取土壤总DNA并进行16S rRNA高通量测序,分析复合微生物菌剂对土壤细菌群落结构和多样性的影响。  结果  复合微生物菌剂可以有效提升土壤中速效磷的含量,调控土壤pH,提高根际土壤中物质代谢和碳化合物分解相关的功能活性。毛竹根际与非根际土壤共检测出26门、65纲、158目、253科、448属、674种。主要优势菌门以变形菌门 Proteobacteria、拟杆菌门 Firmicutes、放线菌门 Actinobacteriota、酸杆菌门 Acidobacteriota、绿弯菌门 Chloroflexi等为主。施用复合微生物菌剂后,毛竹根际土壤微生物群落物种数目显著上升,非根际土壤样本无显著变化;  结论  复合微生物菌剂可以调节土壤矿质元素,改善土壤pH,调控细菌微生物群落组成。
  • 图  1  样本稀释曲线和Venn图

    A:稀释曲线;B:(a)微生物菌剂施用的根际土壤ASV对比;(b)微生物菌剂施用的非根际土壤ASV对比;(c)样本总体ASV对比。

    Figure  1.  Sample dilution curve and Venn diagram

    A: dilution curve; B: (a) Comparison of rhizosphere soil ASV treated with microbial cultures; (b) Comparison of non-rhizosphere soil ASV treated with microbial cultures; (c) Sample population ASV comparison.

    图  2  NMDS分析

    Figure  2.  NMDS analysis

    图  3  门水平下的物种相对丰度

    A:相对丰度;B:样本间显著差异箱图。

    Figure  3.  Relative species abundance at phylum level

    A: histogram of relative abundance; B: Box chart of significant differences between samples.

    图  4  属水平下的物种相对丰度

    A:相对丰度;B:样本间显著差异箱图。

    Figure  4.  Relative abundance of species at the genus level

    A: histogram of relative abundance; B: Box chart of significant differences between samples.

    图  5  样本环境因子与门水平物种RDA分析

    Figure  5.  RDA analysis of sample environmental factors and phylum level species

    图  6  土壤细菌功能预测分析

    Figure  6.  Prediction and analysis of soil bacterial function

    表  1  样本编号对照表

    Table  1.   Sample number comparison table

    样本类型
    Sample type
    分组
    group
    对照组毛竹根际土壤 E0
    对照组毛竹非根际土壤 F0
    复合微生物菌剂处理组毛竹根际土壤 E1
    复合微生物菌剂处理组毛竹非根际土壤 F1
    下载: 导出CSV

    表  2  土壤理化性质

    Table  2.   Difference test of physical and chemical properties of soil samples

    样本
    Sample
    有机质
    OM/ (g·kg−1)
    速效磷
    AP(μmol·g−1
    速效钾
    AK(mg·kg−1
    全钾
    TK(g·kg−1
    全氮
    TN(g·kg−1
    全磷
    TP(mg·kg−1
    速效氮
    AN(mg·kg−1
    pH
    E0 20.81±0.01a 4.42±0.02c 329.12±0.02b 14.79±0.02b 0.97±0.02a 507.04±0.02b 86.34±0.01a 5.68±0.01d
    E1 7.67±0.01c 4.82±0.03a 196.71±0.01d 13.75±0.02c 0.75±0.03b 480.41±0.03c 43.03±0.02c 5.88±0.01c
    F0 17.84±0.01b 4.50±0.01b 341.53±0.03a 15.84±0.04a 0.99±0.01a 531.07±0.04a 68.96±0.04b 6.14±0.02b
    F1 7.01±0.01d 4.51±0.01b 261.03±0.04c 13.73±0.03c 0.77±0.02b 488.1±0.02c 47.05±0.03c 6.54±0.02a
    图中数据为平均值±标准差;同列数据后不同小写字母表示不同处理间差异显著(P < 0.05)。表3同。
    The data in the figure are mean ± standard deviation; Different lowercase letters indicate significant differences between treatments (P<0.05). Same for Table 3.
    下载: 导出CSV

    表  3  Alpha 多样性指数

    Table  3.   Alpha diversity index

    样本
    Sample
    丰度指数
    ACE
    查尔指数
    Chao1
    香农指数
    Shannon
    辛普森指数
    Simpson
    E0 479.84±32.70b 479.76±32.55b 5.74±0.11a 0.0048±0.001b
    E1 539.52±80.66a 539.20±80.37a 5.76±0.06a 0.0055±0.001b
    F0 493.95±96.69b 493.66±96.37b 5.67±0.19a 0.0054±0.001b
    F1 489.88±127.07b 489.25±126.73b 5.56±0.29a 0.0079±0.004a
    下载: 导出CSV

    表  4  细菌功能表达丰度

    Table  4.   Significant differences in bacterial function

    功能分组
    Functional groups
    E0E1F0F1
    光养 phototrophy1.54±0.37c1.61±0.09b2.62±0.26a2.32±0.26a
    光合自养 photoautotrophy1.47±0.38d1.61±0.09c2.6±0.29a2.26±0.32b
    蓝细菌 cyanobacteria1.23±0.36d1.55±0.04c2.56±0.35a2.26±0.32b
    含氧光合自养 oxygenic photoautotrophy1.23±0.36d1.55±0.04c2.56±0.35a2.26±0.32b
    固氮作用 nitrogen fixation3.98±1.90a1.94±0.20b0.75±0.31c0.67±0.36c
    硝酸呼吸 nitrate respiration0.98±0.58a0.26±0.12c0.84±0.32b0.20±0.09c
    氮呼吸 nitrogen respiration0.98±0.58a0.26±0.12b0.84±0.32a0.20±0.09b
    纤维素分解 cellulolysis1.04±0.50a0.5±0.32b0.16±0.02c0.15±0.16c
    甲基营养 methylotrophy0.19±0.01a0.05±0.08c0.19±0.02a0.08±0.05b
    甲醇氧化 methanol oxidation0.19±0.01a0.05±0.08c0.19±0.02a0.08±0.05b
    铁呼吸 iron respiration0.00±0.00d0.02±0.03c0.14±0.04a0.07±0.07b
    芳香烃碳氢降解 aromatic hydrocarbon degradation0.00±0.00c0.02±0.02b0.00±0.00c0.09±0.07a
    脂族非甲烷碳氢化合物降解
    aliphatic non methane hydrocarbon degradation
    0.00±0.00c0.02±0.02b0.00±0.00c0.09±0.07a
    碳氢化合物降解 hydrocarbon degradation0.00±0.00c0.02±0.02b0.00±0.00c0.09±0.07a
    下载: 导出CSV
  • [1] ZHU J, LI M, WHELAN M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review [J]. The Science of the Total Environment, 2018, 612: 522−537. doi: 10.1016/j.scitotenv.2017.08.095
    [2] 李玉敏, 冯鹏飞. 基于第九次全国森林资源清查的中国竹资源分析 [J]. 世界竹藤通讯, 2019, 17(6):45−48.

    LI Y M, FENG P F. Bamboo resources in China based on the ninth national forest inventory data [J]. World Bamboo and Rattan, 2019, 17(6): 45−48. (in Chinese)
    [3] 张雨佳, 刘丽, 邹龙海, 等. 毛竹PheFT12a基因过表达对拟南芥开花及芽发育的影响 [J]. 核农学报, 2023, 37(11):2142−2150. doi: 10.11869/j.issn.1000-8551.2023.11.2142

    ZHANG Y J, LIU L, ZOU L H, et al. Effects of overexpression of the moso bamboo PheFT12a on flowering and bud development of Arabidopsis [J]. Journal of Nuclear Agricultural Sciences, 2023, 37(11): 2142−2150. (in Chinese) doi: 10.11869/j.issn.1000-8551.2023.11.2142
    [4] 刘雅娜, 李袁凯, 王金莲, 等. 不同微生物菌剂对马铃薯的促生作用研究 [J]. 干旱区资源与环境, 2023, 37(9):136−143.

    LIU Y N, LI Y K, WANG J L, et al. Effects of different microbial agents on the growth of potato [J]. Journal of Arid Land Resources and Environment, 2023, 37(9): 136−143. (in Chinese)
    [5] 徐冰石, 陈伏生, 张林平, 等. 土壤产气肠杆菌的解磷特性及其对毛竹苗的促生作用 [J]. 林业科学研究, 2022, 35(3):38−46.

    XU B S, CHEN F S, ZHANG L P, et al. Phosphate solubilizing characteristics of Enterobacter aerogenes and its growth-promoting effect on Phyllostachys edulis seedlings [J]. Forest Research, 2022, 35(3): 38−46. (in Chinese)
    [6] 安福涛, 刘欣宇, 孙富余. 3种芽孢杆菌在番茄生产过程中的应用效果研究 [J]. 山西农业大学学报(自然科学版), 2023, 43(1):82−88.

    AN F T, LIU X Y, SUN F Y. Study on the effectiveness of three Bacillus strains in tomato production [J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2023, 43(1): 82−88. (in Chinese)
    [7] 蓝江林, 朱育菁, 刘波, 等. 茄子3株内生细菌分别与青枯雷尔氏菌混合培养特性研究 [J]. 福建农业学报, 2012, 27(10):1087−1092. doi: 10.3969/j.issn.1008-0384.2012.10.011

    LAN J L, ZHU Y J, LIU B, et al. Populations of co-cultivated endophytic bacteria from eggplants and Ralstonia solanacearum [J]. Fujian Journal of Agricultural Sciences, 2012, 27(10): 1087−1092. (in Chinese) doi: 10.3969/j.issn.1008-0384.2012.10.011
    [8] CHANDRAKALA C, VOLETI S R, BANDEPPA S, et al. Silicate solubilization and plant growth promoting potential of Rhizobium sp. isolated from rice rhizosphere [J]. Silicon, 2019, 11(6): 2895−2906. doi: 10.1007/s12633-019-0079-2
    [9] 武杞蔓, 刘朋宇, 张颖, 等. 微生物菌肥对番茄生长、品质及糖代谢相关酶的影响 [J]. 江苏农业科学, 2022, 50(24):125−130.

    WU Q M, LIU P Y, ZHANG Y, et al. Influences of microbial agents on tomato growth, quality and enzymes related to sugar metabolism [J]. Jiangsu Agricultural Sciences, 2022, 50(24): 125−130. (in Chinese)
    [10] 万小琪, 窦维卉, 杨雪, 等. 不同农艺型措施对温室黄瓜连作土壤的改良效果 [J]. 江苏农业科学, 2022, 50(23):228−234.

    WAN X Q, DOU W H, YANG X, et al. Effects of different agronomic measures on continuous cropping soil improvement of cucumber in greenhouse [J]. Jiangsu Agricultural Sciences, 2022, 50(23): 228−234. (in Chinese)
    [11] 张建鹏. 化肥减量配施微生物菌肥及土壤调理剂对重茬马铃薯生长发育和土壤质量的影响 [J]. 江苏农业科学, 2023, 51(7):205−212.

    ZHANG J P. Influences of chemical fertilizer reduction combined with microbial fertilizer and soil conditioner on growth and soil quality of continuous potatoes [J]. Jiangsu Agricultural Sciences, 2023, 51(7): 205−212. (in Chinese)
    [12] 袁宗胜. 毛竹根区土壤与内生细菌多样性及促生细菌筛选[D]. 福州: 福建农林大学, 2015.

    YUAN Z S. The Diversity of root zone soil bacteria and endophytic bacteria of moso bamboo and screening of growth-promoting endophytic bacteria[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. (in Chinese)
    [13] 国家林业局发布. 中华人民共和国林业行业标准-森林土壤分析方法[M]. 北京: 中国标准出版社, 2000.
    [14] SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities [J]. Applied and Environmental Microbiology, 2009, 75(23): 7537−7541. doi: 10.1128/AEM.01541-09
    [15] 张旋, 杜薇, 徐颖, 等. 包头市半干旱型森林公园土壤细菌多样性与功能 [J]. 生物多样性, 2022, 30(7):193−204. doi: 10.17520/biods.2022245

    ZHANG X, DU W, XU Y, et al. Soil bacterial diversity and function in semi-arid forest parks in Baotou City [J]. Biodiversity Science, 2022, 30(7): 193−204. (in Chinese) doi: 10.17520/biods.2022245
    [16] LOUCA S, PARFREY L W, DOEBELI M. Decoupling function and taxonomy in the global ocean microbiome [J]. Science, 2016, 353(6305): 1272−1277. doi: 10.1126/science.aaf4507
    [17] 涂保华, 符菁, 赵远, 等. 基于光合菌剂的复合微生物菌肥对土壤速效养分含量及微生物群落结构多样性的影响 [J]. 西南农业学报, 2019, 32(12):2878−2884.

    TU B H, FU J, ZHAO Y, et al. Effects of photosynthetic fungicide based compound microbial fertilizer on soil available nutrient content and microbial community structure diversity [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(12): 2878−2884. (in Chinese)
    [18] 张明, 陈泓志, 李明. 一种复合微生物菌肥对穿心莲生长、品质及土壤性质的影响 [J]. 中国实验方剂学杂志, 2023, 29(4):153−160.

    ZHANG M, CHEN H Z, LI M. Effect of a compound microbial fertilizer on growth, quality, and soil properties of Andrographis paniculata [J]. Chinese Journal of Experimental Traditional Medical Formulae, 2023, 29(4): 153−160. (in Chinese)
    [19] 袁雅文. 有益微生物作用机理及微生物菌肥的应用前景 [J]. 杂交水稻, 2022, 37(4):7−14.

    YUAN Y W. Action mechanism of beneficial microorganisms and application prospect of microbial fertilizers [J]. Hybrid Rice, 2022, 37(4): 7−14. (in Chinese)
    [20] 决超. 微生物菌肥与土壤改良基质对连作马铃薯土壤性质及微生物群落的影响 [J]. 江苏农业科学, 2023, 51(1):218−224.

    JUE C. Effects of microbial fertilizer and soil improvement substrate on soil properties and microbial community of continuous cropping potato [J]. Jiangsu Agricultural Sciences, 2023, 51(1): 218−224. (in Chinese)
    [21] 高志伟, 刘凡惠, 贾美清, 等. 基于Illumina高通量测序的天津北大港湿地沉积物细菌群落特征和多样性分析 [J]. 天津师范大学学报(自然科学版), 2021, 41(4):45−52.

    GAO Z W, LIU F H, JIA M Q, et al. Illumina-based high-throughput sequencing analysis of bacterial community structure and diversity in Beidagang wetland sediment, Tianjin [J]. Journal of Tianjin Normal University (Natural Science Edition), 2021, 41(4): 45−52. (in Chinese)
    [22] PIOUCEAU J, BOIS G, PANFILI F, et al. Effects of high nutrient supply on the growth of seven bamboo species [J]. International Journal of Phytoremediation, 2014, 16(7/8/9/10/11/12): 1042−1057.
    [23] LUO X Z, KEENAN T F, CHEN J M, et al. Global variation in the fraction of leaf nitrogen allocated to photosynthesis [J]. Nature Communications, 2021, 12(1): 4866. doi: 10.1038/s41467-021-25163-9
    [24] 冼康华, 苏江, 付传明, 等. 不同菌肥对华重楼根际土壤微生物多样性及理化性质的影响 [J]. 广西科学, 2021, 28(6):616−625.

    XIAN K H, SU J, FU C M, et al. Effects of different bacterial fertilizers on microbial diversity, physical and chemical properties of rhizosphere soil of Paris polyphylla var. chinensis [J]. Guangxi Sciences, 2021, 28(6): 616−625. (in Chinese)
    [25] 胡基华, 李晶, 张淑梅, 等. 解淀粉芽孢杆菌TF28对设施连作黄瓜根际土壤酶活性和微生物的调节 [J]. 江苏农业科学, 2020, 48(7):152−156.

    HU J H, LI J, ZHANG S M, et al. Regulation of Bacillus amyloliquefaciens TF28 on soil enzyme activities and microorganisms in rhizosphere of cucumber under continuous cropping in greenhouse [J]. Jiangsu Agricultural Sciences, 2020, 48(7): 152−156. (in Chinese)
    [26] 张昕, 张立钦, 林海萍, 等. 引入黄瓜根围的2株生防菌株的生态效应 [J]. 浙江林学院学报, 2007, 24(6):649−653.

    ZHANG X, ZHANG L Q, LIN H P, et al. Biocontrol agents introduced into a Cucumis melo rhizosphere [J]. Journal of Zhejiang Forestry College, 2007, 24(6): 649−653. (in Chinese)
    [27] VAN DEYNZE A, ZAMORA P, DELAUX P M, et al. Nitrogen fixation in a Landrace of maize is supported by a mucilage-associated diazotrophic microbiota [J]. PLoS Biology, 2018, 16(8): e2006352. doi: 10.1371/journal.pbio.2006352
    [28] IGIEHON N O, BABALOLA O O. Rhizosphere microbiome modulators: Contributions of nitrogen fixing bacteria towards sustainable agriculture [J]. International Journal of Environmental Research and Public Health, 2018, 15(4): 574. doi: 10.3390/ijerph15040574
    [29] SÁNCHEZ-NAVARRO V, ZORNOZA R, FAZ Á, et al. Inoculation with different nitrogen-fixing bacteria and arbuscular mycorrhiza affects grain protein content and nodule bacterial communities of a fava bean crop [J]. Agronomy, 2020, 10(6): 768. doi: 10.3390/agronomy10060768
    [30] 刘耀辉, 盛可银, 罗建荣, 等. 溶磷菌混施对土壤微生物群落及毛竹生长的影响 [J]. 江西农业大学学报, 2023, 45(2):298−310.

    LIU Y H, SHENG K Y, LUO J R, et al. Effects of phosphorus solubilizing bacterial compound suspensions on growth of moso bamboo(Phyllostachys edulis) and soil microbial community structures [J]. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(2): 298−310. (in Chinese)
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-17
  • 修回日期:  2023-11-13
  • 网络出版日期:  2024-06-26

目录

    /

    返回文章
    返回